Keysight InfiniiVision 2000 X 시리즈 오실로스코 프

사용 설명서

고지

© Keysight 테크놀로지스 2005-2019

본 설명서의 어떤 부분도 어떤 형 식 또 는 수단 (전자적 저장 및 수 정, 외국 어로의 번역 포함)으로 도 미국 및 국 제 저작권법에 따라 Keysight Technologies, Inc. 의 사전 동의 및 서명 동의 없이 복사 하는 것을 금합니 다.

설명서 부품 번호

75015-97083

판

여덟 번째 판, 2019년 6월

Malaysia 에서 인쇄

발행 :

Keysight Technologies, Inc. 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA

수정 내역

75015-97004, 2011 년 1 월 75015-97016, 2011 년 6 월 75015-97027, 2012 년 2 월 75015-97038, 2012 년 7 월 75015-97049, 2013 년 4 월 75015-97061, 2017 년 8 월 75015-97072, 2018 년 2 월 75015-97083, 2019 년 6 월

보증

이 문서의 내용은 "있는 그대로 "제공 되며, 향후 발행물에서 예고 없이 변경 될 수 있습니다. 또한 적용 법률이 허 용하는 범위 내에서 상품성이나 특정 목적에의 적합성에 대한 묵시적 보증 을 포함하여 본 설명서와 설명서 내의 모든 정보와 관련하여 Keysight 는 어 떠한 명시적 또는 묵시적 보증을 하지 않습니다. Keysight 는 본 문서 또는 여기 포함된 정보의 제공, 실시 또는 사용과 관련된 모든 오류 또는 부수적 또는 필연적인 손해에 대해 책임지지 않습니다 . Keysight 와 사용자가 별도 작성한 서면 합의서에 이러한 조건과 상반되는 본 문서의 내용을 다루는 보 증 조건이 있다면 별도 합의서의 보증 조건이 적용됩니다 .

기술 라이센스

이 문서에 설명된 하드웨어 및 / 또는 소프트웨어는 라이센스 하에 제공되며 , 해당 라이센스 조건에 따라서만 사용 또는 복사할 수 있습니다.

미정부의 권리

소프트웨어는 연방 구매 규정 ("FAR") 2.101 에 규정된 "상업용 컴퓨터 소프 트웨어 " 입니다 . FAR 12.212/27.405-3 및 미국방부 FAR 보완 규정 ("DFARS") 227.7202 에 따 라, 미정부가 상업용 컴퓨터 소프트웨 어를 획득하는 방식은 일반 대중의 일 반적인 구매방식과 동일합니다 . 이에 따라 Keysight 는

www.kevsight.com/find/sweula 에서 사본을 제공하는 최종 사용자 라이센 스 계약 (EULA) 에 구현된 표준 상업 라이센스에 의거하여 미정부 고객에게 소프트웨어를 제공합니다 . EULA 에 규정된 라이센스는 미정부가 소프트웨 어를 사용, 수정, 배포 또는 공개할 수 있는 근거가 되는 배타적 권한을 나타 냅니다. EULA 와 여기에 규정된 라이 센스는 Kevsight 에 다음을 요구하거 나 허가하지 않습니다. (1) 일반 대중 에게 관례적으로 제공하지 않는 상업 용 컴퓨터 소프트웨어 또는 상업용 컴 퓨터 소프트웨어 문서와 관련된 기술 정보의 제공; 또는 (2) 상업용 컴퓨터 소프트웨어 또는 상업용 컴퓨터 소프 트웨어 문서를 사용, 수정, 재현, 발 행, 상영, 표시 또는 공개하도록 일반 대중에게 관례적으로 제공되는 권한을 넘어서는 정부 권한을 양도하거나 제 공 . FAR 및 DFARS 에 의거하여 상업 용 컴퓨터 소프트웨어의 모든 제공자 로부터 명시적으로 추가적인 조건, 권 리 또는 라이센스가 요구되고, EULA 이외 다른 계약에서 서면으로 이러한 조건, 권리 또는 라이센스가 명시된 경 우를 제외하고 EULA에 명시된 이상의 추가적인 정부 요구조건이 적용되지 않습니다 . Keysight 는 소프트웨어를 업데이트 , 개정 또는 다른 식으로 수정 할 책임을 지지 않습니다 . FAR 12.211/27.404.2 및 DFARS 227.7102 에 의거 , FAR 2.101 에 규 정된 기술 데이터와 관련하여 미정부 는 기술 데이터에 적용되는 FAR 27.401 또는 DFAR 227.7103-5 (c) 에 정의된 이상의 제한적 권한을 획득 하지 않습니다 .

안전 고지

주 의

주의 고지는 위험 사항을 알려 줍니다. 올바로 수행하거나 준 수하지 않으면 제품이 손상되 거나 중요한 데이터가 손실될 수 있는 작동 절차와 실행 방식 등에 주의를 요합니다. 발생한 상황을 완전히 이해하여 해결 하기 전에는 주의 고지 이후 내 용으로 넘어가지 마십시오.

경고 고지는 위험 사항을 알려 줍니다. 올바로 수행하거나 준 수하지 않으면 상해나 사망을 초래할 수 있는 작동 절차와 실 행 방식 등에 주의를 요합니다 . 발생한 상황은 완전히 이해하 여 해결하기 전에는 경고 고지 이후 내용으로 넘어가지 마십 시오.

InfiniiVision 2000 X 시리즈 오실로스코프 — 개요

표1 2000 X 시리즈 모델 번호, 대역폭

대역폭	70 MHz	100 MHz	200 MHz
2 채널 + 8 로직 채 널 MSO	MSO-X 2002A	MSO-X 2012A	MSO-X 2022A
4 채널 + 8 로직 채 널 MSO	MSO-X 2004A	MSO-X 2014A	MSO-X 2024A
2 채널 DSO	DSO-X 2002A	DSO-X 2012A	DSO-X 2022A
4 채널 DSO	DSO-X 2004A	DSO-X 2014A	DSO-X 2024A

Keysight InfiniiVision 2000 X 시리즈 오실로스코프는 다음과 같은 기능을 제 공합니다 .

- 70 MHz, 100 MHz, 200 MHz 대역폭 모델
- 2 채널 및 4 채널 DSO(디지털 스토리지 오실로스코프) 모델
- 2+8 채널 및 4+8 채널 MSO(혼합 신호 오실로스코프) 모델

MSO는 아날로그 신호와 아날로그 신호에 밀접하게 상호 연관된 디지털 신 호를 동시에 사용하여 혼합 신호 설계를 디버그하는 기능을 제공합니다. 8 개의 디지털 채널은 1 GSa/s 의 샘플링 속도와 50 MHz 의 전환 속도를 지원 합니다.

- 8.5 인치 WVGA 디스플레이
- 인터리브 2 GSa/s 또는 비인터리브 1 GSa/s 의 샘플링 속도
- 1 Mpts/ 채널 MegaZoom IV 파형포착 메모리를 통해 손실 없이 가장 빠른 파형 업데이트 속도 제공.
- 모든 노브는 눌러서 빠른 선택이 가능합니다.
- 트리거 유형 : 에지, 에지 후 에지, 펄스 폭, 패턴, OR, 상승 / 하강 시간. N 차 에지 버스트, 런트, setup & hold(설정 및 유지), 비디오, USB
- 시리얼 디코드 / 트리거 옵션: CAN/LIN, I²C/SPI, 및 UART/RS232. 직렬 디코딩 패킷을 표시하는 리스터가 있습니다.
 디지털 채널 및 직렬 디코딩을 동시에 켤 수 없습니다. [Serial] 직렬 키는 [Digital] 디지털 키보다 우선합니다. 디지털 채널이 켜진 경우 직렬 트리거 를 사용할 수 있습니다.
- 산술 파형 : 더하기, 빼기, 곱하기, FFT, d/dt, 적분, 제곱근, Ax+B, 제곱, 절대값, 상용 로그, 자연 로그, 지수, 10 지수, 로우패스 필터, 하이패스 필 터, 확대, 측정 트렌드, 로직 버스 타이밍 도표 및 로직 버스 상태 도표
- 다른 채널 또는 산술 파형과 비교할 수 있는 기준 파형(2)
- 다양한 내장 측정 기능
- 라이센스 활성화 상태의 내장 파형 발생기 : 사인 , 사각 , 램프 , 펄스 , DC, 노이즈
- 손쉽게 데이터를 인쇄, 저장 및 공유할 수 있는 USB 포트
- 네트워크에 연결하거나 다른 모니터 화면에 표시할 수 있는 옵션 LAN/VGA 모듈
- 옵션 GPIB 모듈
- 오실로스코프에 빠른 도움말 시스템이 내장되어 있습니다. 아무 키나 누르고 있으면 빠른 도움말이 표시됩니다. 빠른 도움말 시스템 사용에 관한 전체 지침은 "내장 빠른 도움말 액세스" 43 페이지에 나와 있습니다.

InfiniiVision 오실로스코프에 대한 자세한 내용은 다음을 참조하십시오. www.keysight.com/find/scope

설명서 안내

이 설명서는 InfiniiVision 2000 X 시리즈 오실로스코프의 사용법을 설명합니다

처음으로 오실로스코프의 포장 을 풀고 사용할 때는 다음 자료 를 참조하십시오 .	• 1장, "시작하기," 페이지 시작 21 쪽
파형과 수집한 데이터를 표시하 는 경우	 2 장, " 수평 컨트롤," 페이지 시작 45 쪽 3 장, " 수직 컨트롤," 페이지 시작 59 쪽 4 장, " 산술 파형," 페이지 시작 67 쪽 5 장, " 기준 파형," 페이지 시작 95 쪽 6 장, " 디지털 채널," 페이지 시작 99 쪽 7 장, " 시리얼 디코드," 페이지 시작 117 쪽 8 장, " 디스플레이 설정," 페이지 시작 123 쪽 9 장, " 라벨," 페이지 시작 129 쪽
트리거를 설정하거나 데이터 수 집 방식을 변경하는 경우	 10 장, "트리거," 페이지 시작 135 쪽 11 장, "트리거 모드 / 커플링," 페이지 시작 165 쪽 12 장, " 수집 제어," 페이지 시작 173 쪽
측정을 수행하거나 데이터를 분 석하는 경우	 13 장, "커서," 페이지 시작 189 쪽 14 장, " 측정," 페이지 시작 197 쪽 15 장, " 마스크 테스트," 페이지 시작 217 쪽 16 장, " 디지털 전압계," 페이지 시작 231 쪽
내장 파형 발생기를 사용하는 경 우	• 17 장 , " 파형 발생기 ," 페이지 시작 235 쪽
저장 , 호출 또는 인쇄 작업을 수 행하는 경우	 18 장, "저장 / 호출 (설정, 화면, 데이터)," 페이지 시작 247 쪽 19 장, "인쇄 (화면)," 페이지 시작 259 쪽
오실로스코프의 유틸리티 기능 또는 웹 인터페이스를 사용하는 경우	 20 장, "유틸리티 설정," 페이지 시작 265 쪽 21 장, "웹 인터페이스," 페이지 시작 285 쪽

참조 정보의 경우	•	<mark>22 장</mark> , " 참조 ," 페이지 시작 299 쪽
라이센스가 적용된 시리얼 버스 트리거링 및 디코드 기능을 사용	•	23 장 , "CAN/LIN 트리거링 및 시리얼 디코드 ," 페이지 시작 317 쪽
하는 경우	•	<mark>24 장</mark> , "I2C/SPI 트리거링 및 시리얼 디코드 ," 페이지 시작 333 쪽
	•	<mark>25 장</mark> , "UART/RS232 트리거링 및 시리얼 디코 드 ," 페이지 시작 353 쪽

참고

일련의 키 및 소프트키 누름에 대한 축약형 지침

일련의 키를 누르는 동작에 대한 지침은 축약 형태로 제공됩니다. [Key1](키 1)을 누른 다음, 소프트키2를 누르고, 다음으로 소프트키3을 누르는 동작은 다음과 같이 축약됩니다.

[Key1](키1) > 소프트키2 > 소프트키3을 누릅니다.

키란 전면 패널 [Key](키) 또는 소프트키를 말합니다. 소프트키는 오실로스코 프 디스플레이 바로 아래에 위치한 6개의 키를 가리킵니다.

설명서 내용

InfiniiVision 2000 X 시리즈 오실로스코프 — 개요 / 3 설명서 안내 / 5

1 시작하기

패키지 내용물 검사 / 21 옵션 LAN/VGA 또는 GPIB 모듈 설치 / 24 편하게 볼 수 있도록 오실로스코프 기울이기 / 24 오실로스코프 전원 켜기 / 25 오실로스코프에 프로브 연결 / 26 /!\ 아날로그 입력의 최대 입력 전압 / 26 //\ 오실로스코프 섀시를 플로팅 상태로 만들지 마십시오 . / 27 파형 입력 / 27 기본 오실로스코프 설정 호출 / 27 자동설정 사용 / 28 패시브 프로브 보정 / 30 전면 패널 컨트롤 및 커넥터 익히기 / 31 다국어용 전면 패널 오버레이 / 38 후면 패널 커넥터 익히기 / 39 오실로스코프 디스플레이 익히기 / 41 내장 빠른 도움말 액세스 / 43

2 수평 컨트롤

수평 (time/div) 스케일을 조정하려면 / 46

- 수평 지연 (위치)을 조정하려면 / 47
- 단일 또는 정지된 수집 작업의 이동 및 축소 / 확대 / 48
- 수평 시간 모드 (일반, XY 또는 롤)를 변경하려면 / 48 XY 시간 모드 / 49
- 줌이 적용된 타임 베이스를 표시하려면 / 52

수평 스케일 노브의 고속 / 미세 조정 설정을 변경하려 면 / 54

- 시간 기준 위치를 설정하려면 (왼쪽, 중앙, 오른쪽) / 54
- 이벤트 검색 / 55 검색을 설정하려면 / 55

타임 베이스 탐색 / 55 시간을 이동하려면 / 56 검색 이벤트를 탐색하려면 / 56 세그먼트를 탐색하려면 / 56

3 수직 컨트롤

파형을 켜거나 끄려면 (채널 또는 산술) / 60 수직 스케일을 조정하려면 / 61 차널 커플링을 지정하려면 / 61 대역폭 제한을 지정하려면 / 62 수직 스케일 노브의 고속 / 미세 조정 설정을 변경하려 면 / 62 파형을 반전하려면 / 63 아날로그 채널 프로브 옵션 설정 / 63

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

채널 단위를 지정하려면 / 63 프로브 감쇠를 지정하려면 / 64

프로브 스큐를 지정하려면 / 64

4 산술 파형

산술 파형을 표시하려면 / 67 산술 연산에 변환 함수 또는 필터를 실행하려면 / 69 산술 파형의 스케일 및 오프셋을 조정하려면 / 69 산술 파형의 단위 / 70 산술 연산자 / 70 더하기 또는 빼기 / 71 곱하기 또는 나누기 / 71 산술 변환 / 72 미분 / 73 적분 / 74 FFT 측정 / 77 제곱근 / 83 Ax + B / 84 제곱 / 85 절대값 / 85 상용 로그 / 86 자연 로그 / 86 지수 / 87 기준 (Base) 10 지수 / 87 산술 필터 / 88 하이패스 및 로우패스 필터 / 88 산술 시각화 / 89 확대 / 90 측정 트렌드 / 90 로직 버스 타이밍 도표 / 92

로직 버스 상태 도표 / 93

5 기준 파형

파형을 기준 파형 위치에 저장하려면 / 95

- 기준 파형을 표시하려면 / 96
- 기준 파형의 스케일 및 위치를 조정하려면 / 97
- 기준 파형 스큐를 조정하려면 / 97
- 기준 파형 정보를 표시하려면 / 98
- 기준 파형 파일을 USB 저장 장치에 저장 / 호출하려 면 / 98

6 디지털 채널

테스트 대상 장치에 디지털 프로브를 연결하려면 / 99 값 디지털 채널용 프로브 케이블 / 100 디지털 채널을 사용한 파형 수집 / 103 자동설정을 사용하여 디지털 채널을 표시하려면 / 103 디지털 파형 표시 내용 해석하기 / 104 디지털 채널의 표시 크기를 변경하려면 / 105 단일 채널을 켜거나 끄려면 / 106 모든 디지털 채널을 켜거나 끄려면 / 106 디지털 채널의 로직 임계값을 변경하려면 / 106 디지털 채널의 위치를 변경하려면 / 107 디지털 채널을 버스로 표시하려면 / 108 디지털 채널을 버스로 표시하려면 / 108 입력 임피던스 / 112 프로브 접지 / 113 프로빙 모범 사례 / 115

7 시리얼 디코드

시리얼 디코드 옵션 / 117 리스터 / 118 리스터 데이터 검색 / 120

8 디스플레이 설정

파형 명암을 조정하려면 / 123 지속성을 설정 또는 지우려면 / 125 디스플레이를 지우려면 / 126 격자 유형을 선택하려면 / 126 격자 명암을 조정하려면 / 127 디스플레이를 고정하려면 / 127

9 라벨

라벨 표시를 켜거나 끄려면 / 129 사전 정의된 라벨을 채널에 할당하려면 / 130 새 라벨을 정의하려면 / 131 사용자가 작성한 텍스트 파일에서 라벨 목록을 로드하려 면 / 132 라벨 라이브러리를 출고 시 설정으로 재설정하려 면 / 133

10 트리거

트리거 레벨 조정 / 136 트리거 강제 적용 / 137

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

에지 트리거 / 138 에지 후 에지 트리거 / 140 펄스 폭 트리거 / 141 패턴트리거 / 144 16 진수 버스 패턴 트리거 / 146 OR트리거 / 146 상승 / 하강 시간 트리거 / 148 N 차 에지 버스트 트리거 / 149 런트 트리거 / 150 설정 및 유지 트리거 / 152 비디오트리거 / 153 특정 비디오 라인에 트리거하려면 / 156 모든 동기 펄스에 트리거하려면 / 157 비디오 신호의 특정 필드에 트리거하려면 / 158 비디오 신호의 모든 필드에 트리거하려면 / 159 홀수 또는 짝수 필드에 트리거하려면 / 160 USB 트리거 / 162

시리얼 트리거 / 164

11 트리거 모드 / 커플링

자동 또는 일반 트리거 모드를 선택하려면 / 166 트리거 커플링을 선택하려면 / 168 트리거 노이즈 제거를 활성화 또는 비활성화하려 면 / 169 트리거 HF 제거를 활성화 또는 비활성화하려면 / 169 트리거 홀드오프를 설정하려면 / 169 외부 트리거 입력 / 170 ⚠️ 오실로스코프 외부 트리거 입력에서의 최대 전 압 / 170

12 수집 제어

단일 수집 실행, 정지 및 구성 (실행 제어) / 173 샘플링 개요 / 175 샘플링 원리 / 175 앨리어싱 / 175 오실로스코프 대역폭 및 샘플링 속도 / 176 오실로스코프 상승 시간 / 177 오실로스코프의 필요 대역폭 / 178 메모리 용량 및 샘플링 속도 / 178 수집 모드 선택 / 179 일반 수집 모드 / 180 피크 검출 수집 모드 / 180 수집 모드 평균 / 182 고분해능 수집 모드 / 185 세그먼트 메모리로 수집 / 185 세그먼트 탐색 / 187 세그먼트 메모리의 무한 지속성 / 187 세그먼트 메모리 재준비 시간 / 188 세그먼트 메모리에서 데이터 저장 / 188

13 커서

커서 측정을 실행하려면 / 190 커서 예 / 192

14 측정

자동 측정 방법 / 197 측정 요약 / 199

모든 스냅샷 / 200 전압 측정 / 201 피크-피크 / 202 최대값 / 202 최소값 / 202 진폭 / 202 최고값 / 202 최저값 / 203 오버슈트 / 203 프리슈트 / 205 평균 / 205 DC RMS / 206 AC RMS / 206 시간 측정 / 208 주기 / 208 주파수 / 209 + 폭 / 210 - 폭 / 210 듀티 사이클 / 210 상승 시간 / 210 하강시간 / 210 지연 / 211 위상 / 212 측정 임계값 / 213 줌 디스플레이가 적용된 측정 창 / 215 15 마스크 테스트

> "황금률 " 파형에서 마스크를 생성하려면 (자동 마스크) / 217 마스크 테스트 설정 옵션 / 220 마스크 통계 / 222

마스크 파일을 수동으로 수정하려면 / 223

마스크 파일 구성 / 227

마스크 테스트의 실행 방법 / 230

- 16 디지털 전압계
- 17 파형 발생기
- 발생되는 파형 유형 및 설정을 선택하려면 / 235 파형 발생기 동기 펄스를 출력하려면 / 238 예상 출력 로드를 지정하려면 / 238 파형 발생기 로직 사전 설정을 사용하려면 / 239 파형 발생기 출력에 노이즈를 추가하려면 / 240 파형 발생기 출력에 변조를 추가하려면 / 240 진폭 변조 (AM)를 설정하려면 / 241 주파수 변조 (FM)를 설정하려면 / 242 FSK(주파수 편이 변조)를 설정하려면 / 244

파형 발생기 기본값을 복원하려면 / 245

18 저장 / 호출 (설정 , 화면 , 데이터)

설정 , 화면 이미지 또는 데이터 저장 / 247 설정 파일을 저장하려면 / 249 BMP 또는 PNG 이미지 파일을 저장하려면 / 249 CSV, ASCII XY 또는 BIN 데이터 파일을 저장하려 면 / 250 길이 제어 / 251 리스터 데이터 파일을 저장하려면 / 252 기준 파형 파일을 USB 저장 장치에 저장하려 면 / 253 마스크를 저장하려면 / 253 저장 위치를 탐색하려면 / 253 파일 이름을 입력하려면 / 254 설정, 마스크 또는 기준 파형 호출 / 255 설정 파일을 호출하려면 / 255 마스크 파일을 호출하려면 / 255 기준 파형 파일을 USB 저장 장치에서 호출하려 면 / 256 기본 설정 호출 / 256

보안 삭제 실행 / 257

19 인쇄(화면)

오실로스코프 화면을 인쇄하려면 / 259

네트워크 프린터 연결을 설정하려면 / 261

프린트 종류를 지정하려면 / 262

팔래트 옵션을 지정하려면 / 263

20 유틸리티 설정

I/O 인터페이스 설정 / 265
오실로스코프의 LAN 연결 설정 / 266
LAN 연결을 구성하려면 / 267
PC 에 대한 독립형 (포인트 투 포인트) 연결 / 268
파일 탐색기 / 269
오실로스코프의 기본 설정 지정 / 271
중앙 또는 접지를 중심으로 "확장"을 선택하려면 / 271
투명 배경을 활성화 / 비활성화하려면 / 272
기본 라벨 라이브러리를 로드하려면 / 272
차동설정 기본 설정을 지정하려면 / 273
오실로스코프의 시계 설정 / 274
후면 패널 TRIG OUT 소스 설정 / 274

서비스 작업 실행 / 275

사용자 보정을 실행하려면 / 276 하드웨어 자가 테스트를 실행하려면 / 278 전면 패널 자가 테스트를 실행하려면 / 279 오실로스코프 정보를 표시하려면 / 279 사용자 보정 상태를 표시하려면 / 279 오실로스코프를 청소하려면 / 279 보증 및 확장 서비스 상태를 확인하려면 / 279 Keysight 에 문의하려면 / 280

[빠른실행]키구성 / 280

주석 추가 / 281

21 웹 인터페이스

웹 인터페이스 액세스 / 286 Browser Web Control / 287 브라우저 기반 원격 전면 패널 / 288 웹 인터페이스를 통한 원격 프로그래밍 / 288 Keysight IO 라이브러리를 사용한 원격 프로그래 밍 / 290 저장/호출 / 290 웹 인터페이스를 통해 파일 저장 / 290 웹 인터페이스를 통해 파일 저장 / 290 웹 인터페이스를 통한 파일 호출 / 291 이미지 가져오기 / 292 식별 기능 / 293 Instrument Utilities / 294 암호 설정 / 295

22 참조

사양 및 특성 / 299

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

측정 범주 / 299 오실로스코프 측정 범주 / 299 측정 범주 정의 / 300 최대 입력 전압 / 300 \mathbb{A} 아날로그 입력의 최대 입력 전압 / 300 \mathbb{A} 디지털 채널에서의 최대 입력 전압 / 300 환경 조건 / 301 프로브 및 액세서리 / 301 라이센스 로드 및 라이센스 정보 표시 / 302 사용 가능한 라이센스 옵션 / 302 기타 사용 가능한 옵션 / 304 MSO로업그레이드 / 304 소프트웨어 및 펌웨어 업데이트 / 304 2 진수 데이터 (.bin) 형식 / 305 MATLAB에서 2 진수 데이터 활용 / 306 2 진수 헤더 형식 / 306 2 진수 데이터 읽기 예제 프로그램 / 308 2 진수 파일의 예 / 309 CSV 및 ASCII XY 파일 / 311 CSV 및 ASCII XY 파일 구조 / 312 CSV 파일 내의 최소 및 최대값 / 312 승인 / 313 제품 마케팅 및 규정 정보 / 315

23 CAN/LIN 트리거링 및 시리얼 디코드

CAN 신호 설정 / 317

CAN 트리거링 / 319

CAN 시리얼 디코드 / 321 CAN 디코드 해석 / 322 CAN 토털라이저 / 323 CAN 리스터 데이터 해석 / 324 리스터에서 CAN 데이터 검색 / 325 LIN 신호 설정 / 325 LIN 트리거링 / 327 LIN 시리얼 디코드 / 329 LIN 디코드 해석 / 330 LIN 리스터 데이터 해석 / 331 리스터에서 LIN 데이터 검색 / 332

24 I2C/SPI 트리거링 및 시리얼 디코드

I2C 신호 설정 / 333 I2C 트리거링 / 334 I2C 시리얼 디코드 / 338 I2C 디코드 해석 / 339 I2C 리스터 데이터 해석 / 340 리스터에서 I2C 데이터 검색 / 341 SPI 신호 설정 / 342 SPI 트리거링 / 345 SPI 시리얼 디코드 / 347 SPI 디코드 해석 / 349 SPI 리스터 데이터 해석 / 350 리스터에서 SPI 데이터 검색 / 350

25 UART/RS232 트리거링 및 시리얼 디코드

UART/RS232 신호 설정 / 353 UART/RS232 트리거링 / 355

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

UART/RS232 시리얼 디코드 / 357 UART/RS232 디코드 해석 / 358 UART/RS232 토털라이저 / 359 UART/RS232 리스터 데이터 해석 / 360 리스터에서 UART/RS232 데이터 검색 / 360

색인

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

1 시작하기

패키지 내용물 검사 / 21 편하게 볼 수 있도록 오실로스코프 기울이기 / 24 오실로스코프 전원 켜기 / 25 오실로스코프에 프로브 연결 / 26 파형 입력 / 27 기본 오실로스코프 설정 호출 / 27 자동설정 사용 / 28 패시브 프로브 보정 / 30 전면 패널 컨트롤 및 커넥터 익히기 / 31 후면 패널 커넥터 익히기 / 39 오실로스코프 디스플레이 익히기 / 41 내장 빠른 도움말 액세스 / 43

이 장에서는 오실로스코프를 처음으로 사용할 때 거쳐야 하는 단계에 대해 설명 합니다.

패키지 내용물 검사

• 운송 용기의 손상을 검사하십시오.

운송 용기가 손상된 것 같으면 선적 내용물이 모두 다 있는지 검사하고 오실 로스코프의 기계적, 전기적인 상태를 확인할 때까지 운송 용기 또는 완충재 를 보관하십시오.

- 다음 품목과 주문한 옵션 액세서리를 모두 받았는지 확인하십시오.
 - InfiniiVision 2000 X 시리즈 오실로스코프
 - 전원 코드 (제조 국가에 따라 특정 유형이 결정됨)

- 오실로스코프 프로브 :
 - 2 채널 모델의 경우 프로브 2 개
 - 4 채널 모델의 경우 프로브 4 개
- 설명서 CD-ROM

InfiniiVision 2000 X-Series oscilloscope

관련 항목 • "프로브 및 액세서리 " 301 페이지

옵션 LAN/VGA 또는 GPIB 모듈 설치

DSOXLAN LAN/VGA 모듈 또는 DSOXGPIB GPIB 모듈을 설치해야 하는 경우 오실로스코프의 전원을 켜기 전에 설치 작업을 수행하십시오.

- 다른 모듈을 설치하기 전에 모듈을 제거해야 하는 경우 모듈의 스프링 탭을 누르고 모듈을 슬롯에서 천천히 분리하십시오.
- 2 모듈을 설치하려면 후면에 있는 슬롯에 완전히 안착될 때까지 모듈을 밀어 넣으십시오.

모듈의 스프링 탭이 슬롯에 걸리며 모듈이 제자리에 고정됩니다.

참 고

LAN/VGA 또는 GPIB 모듈은 반드시 오실로스코프의 전원을 켜기 전에 설치해 야 합니다 .

편하게 볼 수 있도록 오실로스코프 기울이기

오실로스코프의 앞쪽 받침대에는 플립식으로 열고 닫을 수 있는 탭이 있어 오실 로스코프를 기울일 수 있습니다.

Flip-Out Tabs

오실로스코프 전원 켜기

전력 요구사항 라인 전압, 주파수 및 전력:

- ~ 라인 100-120 Vac, 50/60/400Hz
- 100-240Vac, 50/60Hz
- 100W(최대)

주 의 이 계측기에는 자동 범위 조정 라인 전압 입력이 갖추어져 있습니다 . 공급 전압이 지정된 범위 내에 있고 전압 변동이 공칭 공급 전압의 10% 를 초과하 지 않아야 합니다 .

환기 요구사항 공기 흡입 및 배출 영역에 장애물이 없어야 합니다. 적절한 냉각을 위해서는 자 유로운 공기 흐름이 필요합니다. 항상 공기 흡입 및 배출 영역에 장애물이 없도 록 하십시오.

> 팬이 오실로스코프 왼쪽과 바닥에서 공기를 빨아들여 오실로스코프 뒤쪽으로 배출합니다.

오실로스코프를 벤치 위에 올려놓고 사용하는 경우, 적절한 냉각을 위해 측면에 서 최소 2 인치, 위쪽과 뒤쪽에서 4 인치 (100 mm)의 여유 간격을 두십시오.

오실로스코프의 1 전원 코드를 오실로스코프 후면에 연결한 다음 적절한 AC 전압 소스에 연결 전원을 켜려면 합니다. 오실로스코프의 받침대나 다리에 전원 코드가 끼이지 않도록 주의하 십시오.

> 작업자가 착탈식 전원 코드를 쉽게 구별하고 접근할 수 있도록 계측기를 설치 하십시오. 착탈식 전원 코드는 계측기 연결 차단 장치입니다. 이 코드는 계 측기의 다른 부품에 앞서 본선 공급으로부터 본선 회로를 차단합니다. 전면 패널 스위치는 대기 스위치이며 라인 스위치가 아닙니다. 또는 (작업자가 쉽 게 식별하고 접근할 수 있는) 외부에 설치된 스위치 또는 회로 차단기를 연결 차단 장치로 사용할 수 있습니다.

2 오실로스코프는 100 ~ 240VAC 범위의 입력 라인 전압에 대해 자동으로 조 정됩니다. 제조 국가 사양에 일치하는 전원 코드가 제공됩니다.

경 고 항상 접지된 전원 코드를 사용하십시오 . 전원 코드의 접지를 훼손하지 마십 시오 .

3 전원 스위치를 누릅니다.

전원 스위치는 전면 패널 왼쪽 아래 구석에 있습니다. 오실로스코프가 자가 테 스트를 수행하며, 몇 초 후에 작동 가능한 상태가 됩니다.

오실로스코프에 프로브 연결

- 1 오실로스코프 프로브를 오실로스코프 채널 BNC 커넥터에 연결합니다.
- 2 프로브의 집어넣을 수 있는 훅 팁을 회로의 관심 지점 또는 테스트 대상 장치 에 연결합니다. 프로브 접지 리드가 회로의 접지 지점에 연결되어 있는지 확 인하십시오.

30V 이상의 전압을 측정할 때 10:1 프로브를 사용하십시오 .

🕂 오실로스코프 섀시를 플로팅 상태로 만들지 마십시오 .

접지 연결을 훼손하고 오실로스코프 섀시를 "플로팅 "상태로 만들면 부정 확한 측정 결과가 나올 가능성이 높으며, 장비 손상이 발생할 수도 있습니다 . 프로브 접지 리드는 오실로스코프 섀시와 전원 코드 내의 접지 배선과 연 결됩니다. 두 활성 지점 사이를 측정해야 하는 경우 충분한 다이나믹 레인지 의 차동 프로브를 사용하십시오.

경 고 오실로스코프에 대한 접지 연결의 보호 작용을 무효화하지 마십시오 . 오실 로스코프는 반드시 전원 코드를 통해 접지 상태가 유지되어야 합니다 . 접지 를 훼손하면 감전 위험이 발생합니다 .

파형 입력

오실로스코프에 입력할 첫 신호는 데모 2, 프로브 보정 신호입니다. 이 신호는 프로브 보정에 사용됩니다.

- 1 오실로스코프 프로브를 채널 1 에서 전면 패널의 데모 2(프로브 보정) 단자 로 연결합니다.
- 2 프로브의 접지 리드를 접지 단자 (데모2 단자 옆)에 연결합니다.

기본 오실로스코프 설정 호출

기본 오실로스코프 설정을 호출하려면 :

1 [Default Setup](기본 설정)을 누릅니다.

기본 설정은 오실로스코프의 기본 설정을 복원합니다. 그러면 오실로스코프가 알려진 작동 상태에 있게 됩니다. 주요 기본 설정은 다음과 같습니다.

표2 기본 구성 설정

수평	일반 모드 , 스케일 100 µs/div, 지연 0 초 , 중앙 시간 기준
수직 (아날로 그)	채널 1 켜짐 , 스케일 5 V/div, DC 커플링 , 0 V 위치
트리거	에지 트리거 , 자동 트리거 모드 , 0 V 레벨 , 채널 1 소스 , DC 커플 링 , 상승 에지 기울기 , 홀드오프 시간 40 ns
디스플레이	지속성 꺼짐 , 격자 명암 20%
기타	수집 모드 일반, [Run/Stop] (시작 / 정지) 을 사용하여 실행, 커서 및 측정 꺼짐
라벨	라벨 라이브러리에서 만든 모든 사용자 정의 라벨은 보존되지만 (삭 제되지 않음), 채널 라벨은 모두 원래 이름으로 설정됩니다 .

또한 저장 / 호출 메뉴에는 전체 출고 시 설정 (" 기본 설정 호출 " 256 페이지 참 조) 을 복원하거나 보안 삭제 (" 보안 삭제 실행 " 257 페이지 참조) 를 실행할 수 있는 옵션이 있습니다.

자동설정 사용

[Auto Scale](자동설정)을 사용하여 오실로스코프가 입력 신호를 최적으로 표 시하도록 자동으로 구성할 수 있습니다.

1 [Auto Scale](자동설정)을 누릅니다.

그러면 오실로스코프의 디스플레이에서 다음과 유사한 파형을 볼 수 있습니 다.

- 2 오실로스코프의 설정을 이전 상태로 되돌리려면, 자동설정 실행 취소를 누르 십시오.
- 3 "고속 디버그 " 자동설정을 활성화하거나, 자동설정이 적용된 채널을 변경하 거나, 자동설정 도중 수집 모드를 유지하려면, 고속 디버그, 채널 또는 수집 모드를 누르십시오.

이는 자동설정 기본 설정 메뉴에 표시되는 것과 같은 소프트키입니다. "자동 설정 기본 설정을 지정하려면 "273 페이지을 참조하십시오.

파형이 보이지만 사각파가 위에 표시된 것처럼 올바른 형태가 아닐 경우 "패시 브 프로브 보정 " 30 페이지 절차를 수행하십시오.

파형이 보이지 않으면, 프로브가 전면 패널 채널 입력 BNC 와 왼쪽, 데모 2, Probe Comp 단자에 확실하게 연결되어 있는지 확인하십시오.

자동설정의 작 자동설정은 각 채널과 외부 트리거 입력에 존재하는 파형을 모두 분석합니다. 동 원리 여기에는 디지털 채널 (연결된 경우)도 포함됩니다.

> 자동설정은 주파수 25 Hz 이상, 듀티 사이클 0.5% 이상, 피크 - 피크 진폭 10 mV 이상인 반복적인 파형이 포함된 채널을 모두 찾아 활성화하고 스케일을 조정합니다. 이 요구조건을 만족하지 않는 채널은 꺼집니다.

트리거 소스는 외부 트리거에서 시작하여 가장 낮은 번호의 아날로그 채널에서 가장 높은 번호의 아날로그 채널까지, 그리고 최종적으로 (디지털 프로브가 연 결된 경우) 가장 높은 번호의 디지털 채널까지 최초의 유효한 파형을 찾는 방법 으로 선택됩니다.

자동설정 도중,지연은 0.0 초로 설정되며,수평 time/div(스위프 속도) 설정 은 입력 신호의 함수 (화면상 트리거 적용 신호의 약 2 주기)이고,트리거링 모 드는 에지로 설정됩니다.

패시브 프로브 보정

모든 오실로스코프 패시브 프로브는 연결된 오실로스코프 채널의 입력 특성에 일치하도록 보정되어야 합니다.프로브를 부적절하게 보정할 경우 심각한 측정 오류가 발생할 수 있습니다.

- 1 프로브 보정 신호를 입력합니다 (" 파형 입력 " 27 페이지 참조).
- 2 [Default Setup](기본 설정)을 눌러 기본 오실로스코프 설정을 불러옵니다 ("기본 오실로스코프 설정 호출" 27 페이지 참조).
- 3 [Auto Scale](자동설정)을 눌러 프로브 보정 신호를 표시하도록 오실로스 코프를 자동으로 구성할 수 있습니다 ("자동설정 사용" 28 페이지 참조).
- 4 프로브가 연결된 채널 키를 누릅니다([1], [2] 등).
- 5 채널 메뉴에서 프로브를 누릅니다.
- 6 채널 프로브 메뉴에서 프로브 검사를 누른 다음, 화면에 표시되는 지침에 따 릅니다.

필요할 경우, 비금속 공구 (프로브와 함께 제공됨)를 사용하여 가능한 가장 평탄한 펄스를 얻을 수 있도록 트리머 캐패시터를 조정합니다.

N2862/63/90 프로브의 경우 트리머 캐패시터는 프로브 팁의 노란색 조정 부 위입니다. 다른 프로브의 경우 트리머 캐패시터는 프로브 BNC 커넥터에 있 습니다.

- 7 프로브를 다른 모든 오실로스코프 채널에 연결합니다 (2 채널 오실로스코프 의 채널 2, 4 채널 오실로스코프의 채널 2, 3, 4).
- 8 각 채널에 대해 위 절차를 반복합니다.

전면 패널 컨트롤 및 커넥터 익히기

전면 패널에서 키란 누를 수 있는 모든 키 (버튼)를 가리킵니다.

*소프트키*란 디스플레이 바로 아래에 있는 6 개의 키를 특별히 지칭하는 용어입 니다. 소프트키의 명칭은 바로 위 디스플레이에 표시됩니다. 기능은 오실로스 코프 메뉴를 이동함에 따라 변경됩니다.

다음 그림의 경우 아래 표에 있는 번호순 설명을 참조하십시오.

1.	전원 스위치	한 번 누르면 전원이 켜지며 , 다시 누르면 전원이 꺼집니다 . "오실로스코프 전 원 켜기 " 25 페이지를 참조하십시오 .	
2.	소프트키	소프트키의 기능은 디스플레이에서 키 바로 위에 표시되는 메뉴에 따라 변경됩 니다 .	
		🚱 뒤로 / 위로 키를 누르면 소프트키 메뉴 계층 구조 위로 이동할 수 있습니다	
		. 계층 구조 최상단에서 🚳 뒤로 / 위로 키를 누르면 메뉴가 꺼지며 대신 오실로 스코프 정보가 표시됩니다 .	
3.	[Intensity] (명암 조절) 키	이 키를 누르면 키에 불이 켜집니다 . 불이 켜진 상태에서 엔트리 노브를 돌려 파 형 명암을 조정할 수 있습니다 .	
		명암 컨트롤을 변경하여 아날로그 오실로스코프처럼 신호 세부 정보가 두드러 지도록 만들 수 있습니다 .	
		디지털 채널 파형 명암은 조정할 수 없습니다 .	
		명암조절 컨트롤을 사용하여 신호 세부 정보를 보는 방법에 대한 자세한 설명은 " <mark>파형 명암을 조정하려면</mark> " 123 페이지을 참조하십시오 .	

4.	엔트리 노브	엔트리 노브는 메뉴에서 항목을 선택하고 값을 변경하는 데 사용됩니다. 엔트리 노브의 기능은 현재 메뉴 및 소프트키 선택에 따라 변경됩니다. 엔트리 노브를 사용하여 값을 선택할 수 있을 때에는 언제나 엔트리 노브 위에 있는 굽은 화살표 기호 🌒 에 불이 켜집니다. 또한 소프트키에 엔트리 노브 🌒 기호가 표시될 때는 엔트리 노브를 사용하여 값을 선택할 수 있습니다.
		때로는 엔트리 노브를 돌리는 것만으로 선택이 이루어집니다 . 또는 엔트리 노브 를 눌러서 선택을 활성화 또는 비활성화할 수도 있습니다 . 엔트리 노브를 누르 면 팝업 메뉴가 사라집니다 .
5.	도구 키	 도구 키는 다음과 같은 항목으로 구성됩니다. [Utility](유틸리티) 키 - 이 키를 누르면 오실로스코프의 I/O 설정을 구성하 거나, 파일 탐색기를 사용하거나, 기본 설정을 지정하거나, 서비스 메뉴를 열거나, 기타 옵션을 선택할 수 있는 유틸리티 메뉴가 열립니다. 20 장, "유 틸리티 설정,"페이지 시작 265 쪽를 참조하십시오. [Quick Action](빠른 실행) 키 - 이 키를 누르면 모든 스냅샷 측정, 인쇄, 저 장, 호출, 디스플레이 고정 등의 선택 가능한 빠른 실행 작업을 수행할 수 있 습니다. "[빠른 실행] 키 구성 " 280 페이지를 참조하십시오. [Analyze](분석) 키 - 이 키를 누르면 마스크 테스트 (15 장, "마스크 테스 트," 페이지 시작 217 쪽 참조), 트리거 레벨, 측정 임계값 설정 또는 비디오 트리거 자동 설정 및 표시와 같은 분석 기능에 액세스할 수 있습니다. [Wave Gen](파형 발생기) 키 - 이 키를 누르면 파형 발생기 기능에 액세스 할 수 있습니다. 17 장, "파형 발생기," 페이지 시작 235 쪽를 참조하십시오.
6.	트리거 컨트롤	오실로스코프에서 데이터 캡처를 위해 트리거하는 방식을 결정하는 컨트롤입니 다 . 10 장 , " 트리거 ," 페이지 시작 135 쪽 및 11 장 , " 트리거 모드 / 커플링 ," 페이지 시작 165 쪽을 참조하십시오 .

7.	수평 컨트롤	수평 컨트롤은 다음 항목으로 구성됩니다 .	
		 수평 스케일 노브 — 수평 섹션에 스위프 속도) 설정을 조정할 수 있습니다 . 노브 아래의 기호는 이 컨트롤이 수평 스케일을 사용하여 파형을 확대 또는 축소하는 효과가 있음을 나타냅니 다 . 	
		 수평 위치 노브 — ◀▶로 표시된 노브를 돌리면 파형 데이터를 수평으로 이 동할 수 있습니다. 트리거 전 (노브를 시계 방향으로 돌림) 또는 트리거 후 (노브를 시계 반대 방향으로 돌림)에 캡처된 파형을 볼 수 있습니다. 오실로 스코프가 정지된 상태 (실행 모드가 아닐 때)에서 파형을 이동하면 최종적으 로 실행된 수집에서 나온 파형 데이터를 보게 됩니다. 	
		 [Horiz](수평) 키 — 이 키를 누르면 XY 및 롤 모드를 선택하거나, 줌을 활성 화 또는 비활성화하거나, 수평 time/div 미세 조정을 활성화 또는 비활성화하 거나, 트리거 시간 기준 포인트를 선택할 수 있는 수평 메뉴가 열립니다. 	
		 중 ② 키 — ③ 줌 키를 누르면 수평 메뉴를 열지 않고도 오실로스코프 디 스플레이를 일반 섹션과 줌 섹션으로 분할할 수 있습니다. 	
		• [Search](검색) 키 — 수집된 데이터에서 이벤트를 검색할 수 있습니다 .	
		 [Navigate](이동) 키 — 이 키를 누르면 캡처된 데이터 사이를 이동하거나 (시간), 이벤트 또는 세그먼트 메모리 수집을 검색할 수 있습니다. " 타임 베이스 탐색 " 55 페이지을 참조하십시오. 	
		자세한 내용은 2 장 , " 수평 컨트롤 ," 페이지 시작 45 쪽을 참조하십시오 .	
8.	실행 제어 키	[Run/Stop](실행 / 정지) 키가 녹색이면 오실로스코프가 작동 중이며 , 이는 트 리거 조건이 만족될 때 데이터를 수집하고 있음을 의미합니다 . 데이터 수집을 중단하려면 , [Run/Stop](실행 / 정지) 을 누르십시오 .	
		[Run/Stop](실행 / 정지) 키가 빨간색이면 데이터 수집이 정지된 상태입니다 . 데이터 수집을 시작하려면 , [Run/Stop](실행 / 정지) 을 누르십시오 .	
		단일 수집을 캡처 및 표시하려면 (오실로스코프가 실행 중이거나 정지 상태일 때 모두) [Single](싱글) 을 누르십시오 . [Single](싱글) 키는 오실로스코프가 트리거할 때까지 노란색으로 유지됩니다 .	
		자세한 내용은 " 단일 수집 실행 , 정지 및 구성 (실행 제어)" 173 페이지를 참조 하십시오 .	
9.	[Default Setup] (기본 설정) 키	이 키를 누르면 오실로스코프의 기본 설정이 복원됩니다 (자세한 내용은 <mark>" 기본</mark> <mark>오실로스코프 설정 호출</mark> " 27 페이지 참조).	
10.	[Auto Scale] (자 동설정) 키	[AutoScale](자동설정) 키를 누르면 , 오실로스코프에서 어느 채널에 활동이 있는지 신속히 파악한 다음 , 해당 채널을 켜고 스케일을 적용하여 입력 신호를 표시합니다 . " 자동설정 사용 " 28 페이지을 참조하십시오 .	

11.	추가 파형 컨트롤	추가 파형 컨트롤은 다음 항목으로 구성됩니다 .
		 [Math](연산) 키 — 연산(더하기, 빼기 등) 파형 기능에 대한 액세스를 제 공합니다. 4 장, "산술 파형," 페이지 시작 67 쪽를 참조하십시오.
		 [Ref](기준) 키 — 기준 파형 기능에 대한 액세스를 제공합니다. 기준 파형 은 저장한 후 표시하여 다른 아날로그 채널 또는 연산 파형과 비교할 수 있는 파형입니다. 5 장, "기준 파형," 페이지 시작 95 쪽을 참조하십시오.
		 [Digital](디지털) 키 — 이 키를 누르면 디지털 채널을 켜거나 끌 수 있습니 다 (왼쪽 화살표가 켜짐).
		[Digital](디지털) 키 왼쪽에 있는 화살표가 켜지면 , 상단 멀티플렉스 노브를 사용하여 개별 디지털 채널을 선택하고 (적색으로 강조 표시), 하단 멀티플 렉스 노브를 사용하여 선택한 디지털 채널을 배치할 수 있습니다 .
		트레이스가 기존 트레이스 위에 재배치되는 경우 트레이스 왼쪽 에지에 있는 표시기가 Dn 표시 (여기서 n 은 0 ~ 7 사이의 1 자리 채널 번호) 에서 D* 로 변경됩니다 . "*" 기호는 2 개의 채널이 겹쳐 있음을 나타냅니다 .
		상단 노브를 돌려 겹쳐진 채널을 선택하고 , 하단 노브를 돌려 다른 채널과 같 은 방식으로 위치를 지정할 수 있습니다 .
		디지털 채널에 대한 자세한 내용은 <mark>6 장</mark> , " 디지털 채널 ," 페이지 시작 99 쪽 을 참조하십시오 .
		 [Serial](시리얼) 키 — 이 키는 시리얼 디코드를 활성화하는 데 사용됩니다. 시리얼 디코드에서는 멀티플렉스 스케일 및 위치 노브가 사용되지 않습니다. 시리얼 디코드에 대한 자세한 내용은 7 장, "시리얼 디코드," 페이지 시작 117 쪽를 참조하십시오.
		디지털 채널 및 직렬 디코딩을 동시에 켤 수 없습니다 . [Serial] 직렬 키는 [Digital] 디지털 키보다 우선합니다. 디지털 채널이 켜진 경우 직렬 트리거를 사용할 수 있습니다 .
		 멀티플렉스 스케일 노브 — 이 스케일 노브는 연산, 기준 또는 디지털 파형 중 에서 왼쪽 화살표에 불이 켜진 파형에 사용됩니다. 연산 및 기준 파형의 경우 스케일 노브가 아날로그 채널 수직 스케일 노브와 같은 방식으로 작동합니다 .
		 멀티플렉스 위치 노브 — 이 위치 노브는 연산, 기준 또는 디지털 파형 중에서 왼쪽 화살표에 불이 켜진 파형에 사용됩니다. 연산 및 기준 파형의 경우 위치 노브가 아날로그 채널 수직 위치 노브와 같은 방식으로 작동합니다.

12.	측정 컨트롤	측정 컨트롤은 다음 항목으로 구성됩니다 .
		 커서 노브 — 이 노브를 누르면 팝업 메뉴에서 커서를 선택할 수 있습니다. 다음으로, 팝업 메뉴가 닫힌 후에 (시간이 경과되거나 다시 노브를 눌러) 노브를 돌리면 선택한 커서 위치를 조정할 수 있습니다.
		 [Cursors](커서) 키 — 이 키를 누르면 커서 모드와 소스를 선택할 수 있는 메뉴가 열립니다.
		 [Meas](측정) 키 — 이 키를 누르면 일련의 사전 정의 측정을 사용할 수 있 습니다. 14장, " 측정," 페이지 시작 197 쪽을 참조하십시오.
13.	파형 키	[Acquire](수집) 키 일반 , 피크 검출 , 평균 또는 고분해능 수집 모드 (" 수집 모 드 선택 " 179 페이지 참조) 를 선택하고 세그먼트 메모리 (" 세그먼트 메모리로 수집 " 185 페이지 참조) 를 사용할 수 있습니다 .
		[Display](디스플레이) 키 지속성 ("지속성을 설정 또는 지우려면 "125 페이지 참조)을 활성화하거나, 디스플레이를 지우거나, 디스플레이 그리드 (눈금) 명 암 ("격자 명암을 조정하려면 "127 페이지 참조)을 조정할 수 있는 메뉴가 열 립니다.
14.	파일 키	[Save/Recall](저장 / 호출) 키를 누르면 파형 또는 설정을 저장하거나 호출할 수 있습니다 . 18 장 , " 저장 / 호출 (설정 , 화면 , 데이터)," 페이지 시작 247 쪽 을 참조하십시오 .
		[인쇄] 키를 누르면 표시되는 파형을 인쇄할 수 있는 인쇄 구성 메뉴가 열립니 다 . 19 장 , " 인쇄 (화면)," 페이지 시작 259 쪽를 참조하십시오 .
15.	[Help] (도움말) 키	도움말 항목 개요를 표시하고 언어를 선택할 수 있는 도움말 메뉴를 엽니다 . " <mark>내장 빠른 도움말 액세스</mark> " 43 페이지도 참조하십시오 .
16.	수직 컨트롤	 수직 컨트롤은 다음 항목으로 구성됩니다. 아날로그 채널 켜기 / 끄기 키 ─ 이 키를 사용하여 채널을 켜고 끄거나, 소프 트키에 있는 채널 메뉴에 액세스할 수 있습니다. 각 아날로그 채널마다 하나 의 채널 켜기 / 끄기 키가 있습니다. 수직 스케일 노브 ─ 각 채널마다
		페이지 시작 129 쪽을 참조하십시오 . 자세한 내용은 <mark>3 장</mark> , " 수직 컨트롤 ," 페이지 시작 59 쪽을 참조하십시오 .
17.	아날로그 채널 입 력	오실로스코프 프로브 또는 BNC 케이블을 이 BNC 커넥터에 연결합니다 . InfiniiVision 2000 X 시리즈 오실로스코프에서 아날로그 채널 입력의 임피던스 는 1 MO 입니다
-----	------------------------	--
		또한 프로브 자동 감지 기능이 없으므로 , 정확한 측정 결과를 얻으려면 프로브 감쇠를 올바르게 설정해야 합니다 . " 프로브 감쇠를 지정하려면 " 64 페이지을 참조하십시오 .
18.	데모 2, 접지 , 데 모 1 단자	 데모 2 단자 — 이 단자는 프로브의 입력 캐패시턴스를 연결된 오실로스코프 채널에 일치시킬 수 있는 Probe Comp 신호를 출력합니다. "패시브 프로브 보정 " 30 페이지을 참조하십시오. 특정 라이센스 기능이 설치된 경우, 오실 로스코프에서 이 단자를 통해 데모 또는 교육용 신호를 출력할 수 있습니다. 접지 단자 — 데모 1 또는 데모 2 단자에 연결된 오실로스코프 프로브용으로 접지 단자를 사용합니다. 데모 1 단자 — 특정 라이센스 기능이 설치된 경우, 오실로스코프에서 이 단 자를 통해 데모 또는 교육용 신호를 출력할 수 있습니다.
19	LISB ㅎㅅㅌ ㅍㅌ	지글 등에 네도 또는 표적증 선오를 물죽을 두 ᆻ입더다 . SB 대요량 저장 장치 또는 프리터를 오실로스코프에 여격하는 포트인니다
		USB 호환 대용량 저장 장치 (플래시 드라이브, 디스크 드라이브 등) 를 연결하 여 오실로스코프 설정 파일 및 기준 파형을 저장 또는 호출하거나, 데이터 및 화 면 이미지를 저장할 수 있습니다. 18 장, "저장 / 호출 (설정, 화면, 데이터)," 페이지 시작 247 쪽을 참조하십시오.
		인쇄 기능을 사용하려면 USB 호환 프린터를 연결하십시오 . 인쇄와 관련된 자세 한 내용은 19 장 , " 인쇄 (화면)," 페이지 시작 259 쪽를 참조하십시오 .
		또한 사용 가능한 업데이트가 있을 경우 USB 포트를 사용하여 오실로스코프의 시스템 소프트웨어를 업데이트할 수 있습니다 .
		USB 대용량 저장 장치를 오실로스코프에서 분리할 때 특별히 주의를 기울일 필 요는 없습니다 (" 배출 " 작업을 실행할 필요 없음). 파일 작업이 완료된 후에 간 단히 USB 대용량 저장 장치를 오실로스코프에서 분리할 수 있습니다 .
		주의 : ⚠️ 호스트 컴퓨터를 오실로스코프의 USB 호스트 포트에 연결하지 마십 시오. 장치 포트를 사용하십시오. 호스트 컴퓨터는 오실로스코프를 장치로 인 식하므로, 호스트 컴퓨터를 오실로스코프의 장치 포트(후면 패널)에 연결하 십시오. "I/O 인터페이스 설정 " 265 페이지을 참조하십시오.
		후면 패널에 추가 USB 호스트 포트가 있습니다 .
20.	디지털 채널 입력	디지털 프로브 케이블을 이 커넥터에 연결합니다 (MSO 모델에 한함). 6 장 , " 디지털 채널 ," 페이지 시작 99 쪽을 참조하십시오 .
21.	파형 발생기 출력	Gen Out BNC 에서 사인 , 사각 , 램프 , 펄스 , DC 또는 노이즈를 출력합니다 . [Wave Gen](파형 발생기) 키를 눌러 파형 발생기를 설정합니다 . 17 장 , " 파 형 발생기 ," 페이지 시작 235 쪽를 참조하십시오 .

다국어용 전면 패널 오버레이

영문 전면 패널 키 및 라벨 텍스트 번역이 있는 전면 패널 오버레이가 10개국 어로 제공됩니다. 구매 당시 지역화 옵션을 선택할 때 적절한 오버레이가 포함 됩니다.

전면 패널 오버레이를 설치하려면

- 1 전면 패널 노브를 부드럽게 당겨 분리합니다.
- 2 오버레이의 측면 탭을 전면 패널의 슬롯에 삽입합니다.

3 전면 패널 노브를 다시 설치합니다.

전면 패널 오버레이는 아래 부품 번호를 사용하여 www.keysight.com/find/parts 에서 주문할 수 있습니다.

언어	2 채널 오버레이	4 채널 오버레이
프랑스어	75019-94324	75019-94316
독일어	75019-94326	75019-94318
이탈리아어	75019-94323	75019-94331
일본어	75019-94311	75019-94312
한국어	75019-94329	75019-94321
폴란드의	75019-94335	75019-94334
포르투갈어	75019-94327	75019-94319
러시아어	75019-94322	75019-94315
중국어 간체	75019-94328	75019-94320
스페인어	75019-94325	75019-94317
태국	75019-94333	75019-94332
중국어 번체	75019-94330	75019-94310

후면 패널 커넥터 익히기

다음 그림의 경우 아래 표에 있는 번호순 설명을 참조하십시오.

1.	전원 코드 커 넥터	전원 코드를 연결합니다 .
2.	Kensington 잠금 장치 연 결구	계측기를 보호하는 Kensington 잠금 장치를 장착할 수 있는 곳 입니다 .
3.	모듈 슬롯	오실로스코프에는 모듈이 포함되어 있지 않습니다 . DSOXLAN LAN/VGA 모듈을 별도로 주문하여 설치할 수 있습니 다 .
		 LAN 포트 — 오실로스코프와 통신하고 LAN 포트를 사용하는 원격 전면 패널 기능을 사용할 수 있습니다. 21 장, "웹 인 터페이스,"페이지 시작 285 쪽 및 "웹 인터페이스 액세스 " 286 페이지를 참조하십시오.
		 VGA 비디오 출력 — 외부 모니터 또는 프로젝터를 연결하여 더 큰 디스플레이를 제공하거나 오실로스코프와 떨어진 위치 에서 디스플레이를 제공할 수 있습니다.
		외부 디스플레이를 연결해도 오실로스코프의 내장 디스플레 이는 켜진 채로 유지됩니다. 비디오 출력 커넥터는 항상 활성 상태입니다 .
		최적의 비디오 품질과 성능을 보장하려면 페라이트 코어가 있는 차폐 비디오 케이블을 사용하는 것이 좋습니다 .
		또한 DSOXGPIB GPIB 모듈도 별도로 주문하여 설치할 수 있습 니다 .

4.	TRIG OUT 커 넥터	트리거 출력 BNC 커넥터 . " 후면 패널 TRIG OUT 소스 설정 " 274 페이지를 참조하십시오 .
5.	보정 보안 버 튼	" 사용자 보정을 실행하려면 " 276 페이지를 참조하십시오 .
6.	EXT TRIG IN 커넥터	외부 트리거 입력 BNC 커넥터 . 이 기능에 대한 설명은 " 외부 <mark>트리거 입력</mark> " 170 페이지을 참조하십시오 .
8.	USB 장치 포 트	오실로스코프를 호스트 PC 에 연결할 수 있는 포트입니다 . USB 장치 포트를 통해 호스트 PC 에서 오실로스코프로 원격 명 령을 내릴 수 있습니다 . "Keysight IO 라이브러리를 사용한 원 격 프로그래밍 " 290 페이지를 참조하십시오 .
7.	USB 호스트 포트	전면 패널에 있는 USB 호스트 포트와 동일한 기능을 하는 포트 입니다 . USB 호스트 포트는 오실로스코프의 데이터를 저장하 거나 소프트웨어 업데이트를 로드하는 데 사용됩니다 . USB 호 스트 포트 (참조 37 페이지) 도 참조하십시오 .

오실로스코프 디스플레이 익히기

오실로스코프의 디스플레이에는 수집된 파형, 설정 정보, 측정 결과 및 소프트 키 정의가 표시됩니다.

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

그림 1 오실로스코프 디스플레이 해석하기

상태 표시줄	디스플레이의 가장 위쪽 줄에는 수직 , 수평 , 트리거 설정 정보가 있 습니다 .
디스플레이 영 역	디스플레이 영역에는 파형 수집 , 채널 식별자 , 아날로그 트리거 , 접지 레벨 표시기가 있습니다 . 각 아날로그 채널의 정보는 서로 다 른 색상으로 표시됩니다 .
	신호 세부 정보는 256 레벨의 명암을 사용하여 표시됩니다 . 신호 세 부 정보 확인에 대한 자세한 내용은 <mark>" 파형 명암을 조정하려면</mark> " 123 페이지을 참조하십시오 .
	디스플레이 모드에 대한 자세한 내용은 8 장 , " 디스플레이 설정 ," 페이지 시작 123 쪽을 참조하십시오 .
정보 영역	정보 영역에는 일반적으로 수집 , 아날로그 채널 , 자동 측정 , 커서 결과가 표시됩니다 .
메뉴 줄	이 줄에는 일반적으로 메뉴 이름 또는 선택한 메뉴와 관련된 기타 정 보가 표시됩니다 .

시작하기 1

소프트키 라벨	소프트키의 기능을 설명하는 라벨입니다 . 일반적으로 , 소프트키를 사용하여 선택한 모드 또는 메뉴에 대해 추가적인 파라미터를 설정 할 수 있습니다 .	
	메뉴 계층 구조 상단에 있는 🐼 뒤로 / 위로 키를 누르면 , 소프트키 라벨이 꺼지며 , 채널 오프셋 및 기타 구성 파라미터를 설명하는 추 가적인 상태 정보가 표시됩니다 .	

내장 빠른 도움말 액세스

빠른 도움말을 1 도움말을 보려는 키 또는 소프트키를 누른 채로 유지합니다. 보려면

또는 웹 브라우저 원격 전면 패널을 사용할 경우 소프트키를 마우스 오른쪽 버튼으로 클릭하십시오.

빠른 도움말은 다른 키를 누르거나 노브를 돌리기 전까지 화면에 유지됩니다.

1 시작하기

사용자 인터페 사용자 인터페이스 및 빠른 도움말 언어를 선택하려면:

이스 및 빠른 도 1 [Help](도움말)을 누른 다음 언어 소프트키를 누릅니다.

움말 언어를 선 택하려면 2 원하는 언어가 선택될 때까지 반복하여 언어 소프트키를 눌렀다 떼거나 엔트 리 노브를 돌립니다.

> 다음 언어를 사용할 수 있습니다. 영어, 프랑스어, 독일어, 이탈리아어, 일본 어, 한국어, 포르투갈어, 러시아어, 중국어 간체, 스페인어, 중국어 번체.

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

2 수평 컨트롤

수평 (time/div) 스케일을 조정하려면 / 46 수평 지연 (위치)을 조정하려면 / 47 단일 또는 정지된 수집 작업의 이동 및 축소 / 확대 / 48 수평 시간 모드 (일반, XY 또는 롤)를 변경하려면 / 48 줌이 적용된 타임 베이스를 표시하려면 / 52 수평 스케일 노브의 고속 / 미세 조정 설정을 변경하려면 / 54 시간 기준 위치를 설정하려면 (왼쪽, 중앙, 오른쪽) / 54 이벤트 검색 / 55 타임 베이스 탐색 / 55

수평 컨트롤에는 다음이 포함됩니다.

- 수평 스케일 및 위치 노브
- 수평 메뉴를 열 수 있는 [Horiz](수평) 키
- ② 줌 키 : 분할 화면 줌 디스플레이를 빠르게 활성화 / 비활성화
- [Search](검색)키: 아날로그 채널 또는 시리얼 디코드 모드에서 이벤트 찾 기
- [Navigate](이동) 키:시간이동, 이벤트 검색 또는 세그먼트 메모리 수집

다음 그림에 [Horiz](수평) 키를 누르면 나타나는 수평 메뉴가 나와 있습니다.

2 수평 컨트롤

그림 2 수평 메뉴

수평 메뉴에서 시간 모드 (일반, XY 또는 롤)를 선택하고, 줌을 활성화하며, 타임 베이스 미세 조정 (버니어)을 설정하고, 시간 기준을 지정할 수 있습니다.

현재 샘플링 속도는 미세 및 시간 기준 소프트키 위에 표시됩니다.

수평 (time/div) 스케일을 조정하려면

1 ↓ ↓ ↓ 로 표시된 커다란 수평 스케일(스위프 속도) 노브를 돌리면 수평 time/div 설정이 변경됩니다.

상태 표시줄에서 time/div 정보가 어떻게 변화하는지 지켜 보십시오.

디스플레이 상단에 있는 ♥ 기호는 시간 기준 포인트를 나타냅니다.

수평 스케일 노브는 수집이 실행 중이거나 정지되었을 때(일반 시간 모드에서) 작동합니다. 실행 중일 때 수평 스케일 노브를 조정하면 샘플링 속도가 변경됩 니다. 정지되었을 때 수평 스케일 노브를 조정하면 수집된 데이터가 확대 표시 됩니다. "단일 또는 정지된 수집 작업의 이동 및 축소 / 확대 " 48 페이지를 참조 하십시오.

수평 스케일 노브는 줌 디스플레이와 사용 목적이 다르다는 점에 유의하십시오. " 중이 적용된 타임 베이스를 표시하려면 " 52 페이지을 참조하십시오.

수평 지연(위치)을 조정하려면

1 수평 지연(위치)노브를 돌립니다(◀▶).

트리거 포인트가 수평으로 이동하며 0.00 초마다 일시 정지되고 (기계식 톱 니 모양), 지연 값이 상태 표시줄에 표시됩니다.

지연 시간을 변경하면 트리거 포인트 (단색 역삼각형) 가 수평으로 이동하며, 시간 기준 포인트 (흰색 역삼각형 ∇)에서 얼마나 떨어져 있는지가 표시됩니다. 이러한 기준 포인트는 디스플레이 그리드 상단을 따라 표시됩니다.

그림 2 에 지연 시간이 200 µs 로 설정된 트리거 포인트가 나와 있습니다. 지연 시간 수치를 통해 시간 기준 포인트가 트리거 포인트에서 얼마나 멀리 떨어져 있는지 알 수 있습니다. 지연 시간을 0 으로 설정하면 지연 시간 표시기가 시간 기준 표시기와 겹칩니다.

트리거 포인트 왼쪽에 표시되는 모든 이벤트는 트리거 발생 이전에 일어난 것입 니다. 이러한 이벤트를 트리거 전 정보라 부르며, 트리거 포인트에 이르게 되는 이벤트를 보여 줍니다.

트리거 포인트 오른쪽에 있는 모든 이벤트는 트리거 후 정보라고 부릅니다. 지 연 범위 양(트리거 전 및 트리거 후 정보)은 선택한 time/div 및 메모리 용량에 따라 달라집니다.

수평 위치 노브는 수집이 실행 중이거나 정지되었을 때 (일반 시간 모드에서) 작동합니다. 실행 중일 때 수평 스케일 노브를 조정하면 샘플링 속도가 변경됩 니다. 정지되었을 때 수평 스케일 노브를 조정하면 수집된 데이터가 확대 표시 됩니다. "단일 또는 정지된 수집 작업의 이동 및 축소 / 확대 " 48 페이지를 참조 하십시오. 2 수평 컨트롤

수평 위치 노브는 줌 디스플레이와 사용 목적이 다르다는 점에 유의하십시오." 줌이 적용된 타임 베이스를 표시하려면 "52 페이지을 참조하십시오.

단일 또는 정지된 수집 작업의 이동 및 축소 / 확대

오실로스코프가 정지된 상태에서 수평 스케일 및 위치 노브를 사용하여 파형을 이동하거나 축소 / 확대할 수 있습니다. 정지된 디스플레이에는 여러 가지 유용 한 수집 정보가 있을 수 있지만, 마지막 수집 내용만 이동하거나 축소 / 확대할 수 있습니다.

캡처된 파형에 대해 추가적인 정보를 나타낼 수 있으므로 수집한 파형의 이동 (수평 이동) 및 스케일 (수평 방향 축소 또는 확대) 기능은 중요합니다. 이 추가 적인 정보는 대개 파형을 다른 추상화 단계에서 관찰함으로써 얻을 수 있습니다 . 파형을 큰 틀에서 보는 동시에 사소한 특정 세부 정보를 보기를 원할 수 있습니 다.

파형을 수집한 후에 파형 세부 정보를 검사할 수 있는 기능은 일반적으로 디지 털 오실로스코프에서 제공하는 장점입니다. 때로 이 기능은 단순히 커서로 측정 하거나 화면을 인쇄하기 위해 디스플레이를 고정시키는 기능을 의미하기도 합 니다. 일부 디지털 오실로스코프는 여기서 한 단계 더 나아가 파형을 수집한 후 에 파형을 이동하고 수평 스케일을 변경하여 신호의 세부 정보를 더 세심하게 검사할 수 있는 기능이 포함되어 있습니다.

데이터를 수집하는 데 사용되는 time/div 와 데이터를 확인하는 데 사용되는 time/div 사이의 스케일 조정 비율에는 제한이 없습니다. 하지만 유효 제한에는 있습니다. 유효 제한은 부분적으로 분석하는 신호의 기능입니다.

참 고

정지된 수집 내용의 축소 / 확대

수집된 곳에서 정보를 1000 의 계수로 수평 확대하고 10 의 계수로 수직 확대하 여 표시하더라도 화면에는 비교적 양호한 표시 내용이 유지됩니다. 표시되는 데 이터에 대해 자동 측정만이 가능하다는 점에 유의하십시오.

수평 시간 모드 (일반 , XY 또는 롤) 를 변경하려면

- 1 [Horiz](수평)을 누릅니다.
- 2 수평 메뉴에서 시간 모드를 누른 다음 아래 항목 중에서 하나를 선택합니다.
 - 일반 오실로스코프의 일반 표시 모드입니다.

일반 시간 모드에서는 트리거 전에 발생한 신호 이벤트가 트리거 포인트 (▼) 왼쪽에 표시되며, 트리거 후에 발생한 신호 이벤트는 트리거 포인트 오른쪽에 표시됩니다.

 XY — XY 모드를 선택하면 디스플레이가 전압 대 시간 디스플레이에서 전 압 대 전압 디스플레이로 변경됩니다. 타임 베이스는 꺼집니다. 채널 1 진 폭은 X 축에 표시되며 채널 2 진폭은 Y 축에 표시됩니다.

XY 모드를 사용하여 두 신호 사이의 주파수 및 위상 관계를 비교할 수 있 습니다. 또한 XY 모드를 변환기와 함께 사용하면 변형 대 변위, 유속 대 압력, 전압 대 전류 또는 전압 대 주파수를 표시할 수 있습니다.

커서를 사용하여 XY 모드 파형에서 측정을 수행합니다.

측정에 XY 모드를 사용하는 방법에 대한 내용은 "XY 시간 모드 " 49 페이 지를 참조하십시오.

喜 — 화면 전체에 걸쳐 파형이 서서히 오른쪽에서 왼쪽으로 움직이게 만 듭니다. 이 기능은 타임 베이스 설정이 50 ms/div 이하일 때만 작동합니 다. 현재 타임 베이스 설정이 50 ms/div 한계치보다 빠를 경우, 롤 모드에 진입하면 타임 베이스가 50 ms/div 로 설정됩니다.

롤 모드에는 트리거가 없습니다. 화면의 고정 기준 포인트가 화면 가장 오 른쪽에 표시되며 현재 시간을 가리킵니다. 발생된 이벤트는 기준 포인트 의 왼쪽으로 스크롤됩니다. 트리거가 없으므로 트리거 전 정보는 제공되 지 않습니다.

롤 모드에서 디스플레이를 일시 정지하려면 [Single](싱글) 키를 누르십 시오. 롤 모드에서 디스플레이를 지우고 수집을 새로 시작하려면 다시 [Single](싱글) 키를 누르십시오.

저주파 파형에 롤 모드를 사용하면 스트립 차트 레코더와 유사한 디스플레 이를 볼 수 있습니다. 디스플레이에서 파형을 흐르게 할 수 있습니다.

XY 시간 모드

XY 시간 모드는 2 개의 입력 채널을 사용하여 오실로스코프를 전압 대 시간 디 스플레이에서 전압 대 전압 디스플레이로 변경시킵니다. 채널 1 은 X 축 입력, 채널 2 는 Y 축 입력이 됩니다. 다양한 변환기를 사용하면 디스플레이에 변형 대 변위, 유속 대 압력, 전압 대 전류 또는 전압 대 주파수를 표시할 수 있습니다

예 아래 예는 Lissajous 방법론을 사용하여 동일한 주파수를 가진 두 신호 사이의 위상 차이를 측정하는 방법으로 XY 디스플레이 모드의 일반적인 사용 예를 보 여 줍니다.

- 사인파 신호를 채널 1 에 연결하고, 주파수는 같지만 위상이 어긋난 사인파 신호를 채널 2 에 연결합니다.
- 2 [AutoScale](자동설정) 키를 누르고, [Horiz](수평) 키를 누른 다음, 시간 모드를 누르고 "XY" 를 선택합니다.
- 3 채널 1 및 2 위치 (♦) 노브를 사용하여 신호를 디스플레이 중앙으로 배치합니 다. 채널 1 및 2 volts/div 노브와 채널 1 및 2 미세 소프트키를 사용하여 편 리하게 볼 수 있도록 신호를 확대합니다.

위상차 각도 (θ) 는 다음 공식으로 계산할 수 있습니다 (두 채널에서 진폭이 동일한 것으로 가정).

$$\sin\theta = \frac{A}{B}or\frac{C}{D}$$

그림 3 XY 시간 모드 신호, 디스플레이 중앙에 정렬됨

- 4 [Cursors](커서) 키를 누릅니다.
- 5 Y2 커서를 신호 상단으로 설정하고, Y1 을 신호 하단으로 설정합니다.

디스플레이 하단에 표시되는 ΔY 값을 기록합니다. 이 예에서는 Y 커서를 사용하지만, X 커서를 대신 사용할 수도 있습니다.

6 Y1 및 Y2 커서를 신호와 Y 축의 교차점으로 이동합니다. 다시 ΔY 값을 기록 합니다.

그림 4 위상차 측정, 자동 및 커서 사용

7 아래 공식을 사용하여 위상차를 계산합니다.

예를 들어, 첫 번째 ΔY 값이 1.688 이고 두 번째 ΔY 값이 1.031 이라면,

 $\sin\theta = \frac{\text{second } \varDelta \text{ Y}}{\text{first } \varDelta \text{ Y}} = \frac{1.031}{1.688}; \ \theta = 37.65 \text{ degrees of phase shift}$

차고

XY 디스플레이 모드의 Z 축 입력 (블랭킹)

XY 디스플레이 모드를 선택하면 타임 베이스가 꺼집니다. 채널 1 은 X 축 입력, 채널 2 는 Y 축 입력이 되며, 후면 패널 EXT TRIG IN 은 Z 축 입력이 됩니다. Y 대 X 표시 부분만을 보려면 Z 축 입력을 사용하십시오. Z 축으로 트레이스를 켜 거나 끌 수 있습니다(빔을 켜고 끄기 때문에 아날로그 오실로스코프에서는 이 를 Z 축 블랭킹이라고 부릅니다). Z 가 낮으면 (<1.4 V) Y 대 X 가 표시되고, Z 가 높으면 (>1.4 V) 트레이스가 꺼집니다.

줌이 적용된 타임 베이스를 표시하려면

이전까지 지연된 스위프 모드로 불리던 줌 모드는 일반 디스플레이를 수평으로 확장한 버전입니다. 줌 모드를 선택하면 디스플레이가 반으로 나뉩니다. 디스 플레이 위쪽 절반에는 일반 time/div 창이 표시되며, 아래쪽 절반에는 더 빠른 줌 time/div 창이 표시됩니다.

줌 창은 일반 time/div 창의 확대된 일부입니다. 줌을 사용하여 일반 창의 일부 를 찾고 수평으로 확대하여 신호를 더 상세하게 (높은 분해능) 분석할 수 있습 니다.

줌을 켜려면 (또는 끄려면):

1 ② 줌 키를 누릅니다 (또는 [Horiz](수평) 키를 누른 다음 줌 소프트키 누름).

일반 디스플레이의 확대된 부분은 상자로 외곽선이 표시되며 일반 디스플레이 의 나머지 부분은 음영 처리됩니다. 상자는 일반 스위프 중에서 아래쪽 절반에 확대된 부분을 나타냅니다.

줌 창의 time/div 를 변경하려면 수평 스케일 (스위프 속도) 노브를 돌리십시오 . 이 노브를 돌리면 파형 표시 영역 위의 상태 표시줄에 줌 창의 time/div 가 강 조 표시됩니다 . 수평 스케일 (스위프 속도) 노브는 상자의 크기를 제어합니다 .

수평 위치 (지연 시간) 노브는 줌 창의 왼쪽에서 오른쪽 위치를 설정합니다. 트 리거 포인트를 기준으로 표시되는 시간인 지연 값은 지연 시간 (◀▶) 노브를 돌 릴 때 디스플레이의 오른쪽 상단에 일시적으로 표시됩니다.

음의 지연 값은 트리거 이벤트가 발생하기 전의 파형 부분을 나타내며, 양의 값 은 트리거 이벤트 후의 파형을 나타냅니다. 일반 창의 time/div 를 변경하려면 줌을 끄고 수평 스케일 (스위프 속도) 노브 를 돌리십시오 .

측정에 줌 모드를 사용하는 방법에 대한 내용은 "최고값 측정을 위해 펄스를 격 리하려면 "203 페이지 및 "주파수 측정을 위해 이벤트를 격리하려면 "209 페 이지를 참조하십시오.

수평 스케일 노브의 고속 / 미세 조정 설정을 변경하려면

1 수평 스케일 노브를 누르면 (또는 [**수평**] > 미세 누름) 수평 스케일의 미세 조정과 고속 조정이 전환됩니다.

미세를 선택한 경우 수평 스케일 노브를 돌리면 time/div(디스플레이 상단의 상 태 표시줄에 표시됨) 설정이 더 작은 단위로 증가합니다. **미세**가 켜진 상태에서 는 time/div 가 완전 보정 상태를 유지합니다.

□ 세가 꺼진 경우 수평 스케일 노브를 돌리면 time/div 설정이 1-2-5 단계로 순 차적으로 변경됩니다.

시간 기준 위치를 설정하려면 (왼쪽, 중앙, 오른쪽)

시간 기준은 지연 시간 디스플레이의 기준 지점입니다 (수평 위치).

- 1 [Horiz](수평)을 누릅니다.
- 2 수평 메뉴에서 시간 기준를 누른 다음 아래 항목 중에서 하나를 선택합니다.
 - **왼쪽** 시간 기준이 디스플레이 왼쪽 가장자리에서 큰 눈금 하나 떨어진 위치에 설정됩니다.
 - 중앙 시간 기준이 디스플레이 중앙으로 설정됩니다.
 - 오른쪽 시간 기준이 디스플레이 오른쪽 가장자리에서 큰 눈금 하나 떨 어진 위치에 설정됩니다.

디스플레이 격자의 상단에 있는 속이 빈 작은 삼각형 (∇) 은 시간 기준의 위치를 나타냅니다. 지연 시간을 0 으로 설정하면 트리거 포인트 표시기 (▼) 가 시간 기 준 표시기와 겹쳐집니다.

시간 기준 위치는 지연이 0 으로 설정된 상태에서 수집 메모리 내와 디스플레이 에 표시되는 트리거 이벤트의 최초 위치를 설정합니다.

수평 스케일 (스위프 속도) 노브를 돌리면 시간 기준 포인트 (∇) 를 중심으로 파 형이 확장되거나 축소됩니다 . " 수평 (time/div) 스케일을 조정하려면 " 46 페이 지를 참조하십시오 .

일반 모드에서 (줌 모드가 아닐 때) 수평 위치 (◀▶) 노브를 돌리면 트리거 포인 트 표시기 (▼) 가 시간 기준 포인트 (∇) 의 왼쪽 또는 오른쪽으로 이동합니다. " 수평 지연 (위치)을 조정하려면 " 47 페이지를 참조하십시오.

이벤트 검색

[Search](검색) 키와 메뉴를 사용하여 아날로그 채널에서 시리얼 이벤트를 검 색할 수 있습니다.

검색을 설정하는 것은 (" <mark>검색을 설정하려면</mark> " 55 페이지 참조) 트리거 설정과 비슷합니다.

검색이 트리거와 다른 점은 트리거 레벨 대신 측정 임계값 설정이 사용된다는 것입니다.

발견된 검색 이벤트는 눈금 상단에 흰색 삼각형으로 표시되며, 소프트키 라벨 바로 위에 있는 메뉴 라인에 발견된 이벤트 수가 표시됩니다.

검색을 설정하려면

- 1 [Search](검색)을 누릅니다.
- 2 검색을 설정하는 것은 트리거 설정과 비슷합니다.
 - 시리얼 검색을 설정하려면 10 장, "트리거," 페이지 시작 135 쪽 및 "리 스터 데이터 검색 " 120 페이지을 참조하십시오.

검색에는 트리거 레벨이 아니라 측정 임계값 설정이 사용된다는 점에 유의하십 시오. 검색 메뉴에 있는 **임계값** 소프트키를 사용하여 측정 임계값 메뉴를 열 수 있습니다. " 측정 임계값 " 213 페이지을 참조하십시오.

타임 베이스 탐색

[Navigate](이동) 키 및 컨트롤을 사용하여 다음 항목을 탐색할 수 있습니다.

- 캡처한 데이터 ("시간을 이동하려면 "56 페이지 참조)
- 검색 이벤트 ("검색 이벤트를 탐색하려면 "56 페이지 참조)

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

• 세그먼트, 세그먼트 메모리 수집이 켜진 경우 ("세그먼트를 탐색하려면 "56 페이지 참조)

시간을 이동하려면

수집이 정지되었을 때, 이동 컨트롤을 사용하여 캡처된 데이터를 둘러 볼 수 있 습니다.

- 1 [Navigate](이동)을 누릅니다.
- 2 이동 메뉴에서 이동을 누른 다음 시간을 선택합니다.
- 3 ●●● 탐색 키를 누르면 시간 기준으로 뒤로 재생, 정지 또는 앞으로 재생됩니다. 또는 키를 여러 번 누르면 재생 속도가 빨라집니다. 속도는 3 단계가 있습니다.

검색 이벤트를 탐색하려면

수집이 정지되었을 때, 탐색 컨트롤을 사용하여 발견된 검색 이벤트로 이동할 수 있습니다 ([Search](검색) 키 및 메뉴를 사용하여 설정, "이벤트 검색 "55 페이지 참조).

- 1 [Navigate](이동)을 누릅니다.
- 2 이동 메뉴에서 이동을 누른 다음 검색을 선택합니다.
- 3 ④ ▶ 이전 및 다음 키를 누르면 이전 또는 다음 검색 이벤트로 이동합니다.

시리얼 디코드를 검색할 때

- 🗩 정지 키를 눌러 마크를 설정하거나 삭제할 수 있습니다.
- 자동 줌 소프트키로 탐색 도중 파형 디스플레이를 표시된 행에 맞도록 자동으로 축소 / 확대할 것인지 지정할 수 있습니다.
- 리스터 스크롤 소프트키를 누르면 엔트리 노브를 사용하여 리스터 디스플레
 이 내에서 데이터 행을 스크롤할 수 있습니다.

세그먼트를 탐색하려면

세그먼트 메모리 수집이 활성화되고 수집이 정지된 상태에서 탐색 컨트롤을 사용하여 수집된 세그먼트를 둘러 볼 수 있습니다.

- 1 [Navigate](이동)을 누릅니다.
- 2 이동 메뉴에서 이동을 누른 다음 세그먼트를 선택합니다.
- 3 재생 모드를 누른 다음 항목을 선택합니다.

• 수동 — 세그먼트를 수동으로 재생합니다.

수동 재생 모드에서,

- ●● 이전 및 다음 키를 누르면 이전 또는 다음 세그먼트로 이동합니다.
- < 소프트키를 누르면 첫 세그먼트로 이동합니다.
- 소프트키를 누르면 마지막 세그먼트로 이동합니다.
- 자동 세그먼트를 자동으로 재생합니다.

자동 재생 모드에서 ,

●●● 탐색 키를 누르면 시간 기준으로 뒤로 재생, 정지 또는 앞으로 재생됩니다.
 ● 또는 ● 키를 여러 번 누르면 재생 속도가 빨라집니다.

2 수평 컨트롤

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

3 수직 컨트롤

파형을 켜거나 끄려면 (채널 또는 산술) / 60 수직 스케일을 조정하려면 / 61 수직 위치를 조정하려면 / 61 채널 커플링을 지정하려면 / 61 대역폭 제한을 지정하려면 / 62 수직 스케일 노브의 고속 / 미세 조정 설정을 변경하려면 / 62 파형을 반전하려면 / 63 아날로그 채널 프로브 옵션 설정 / 63

수직 컨트롤에는 다음이 포함됩니다.

- 각 아날로그 채널의 수직 스케일 및 위치 노브
- 채널을 켜거나 끄고 채널의 소프트키 메뉴에 액세스할 수 있는 채널 키
 다음 그림에 [1] 채널 키를 누르면 표시되는 채널 1 메뉴가 나와 있습니다.

표시되는 각 아날로그 채널에서 신호의 접지 레벨은 디스플레이 맨 왼쪽에 있는 ♪ 아이콘의 위치로 확인할 수 있습니다.

파형을 켜거나 끄려면(채널 또는 산술)

1 채널을 켜거나 끄려면(및 채널의 메뉴가 표시하려면) 아날로그 채널 키를 누릅니다.

채널이 켜진 경우 해당 키에 불이 켜집니다.

채널 끄기

채널을 끄려면 해당 채널의 메뉴가 표시되는 상태여야 합니다. 예를 들어, 채널 1 과 채널 2 가 켜져 있고 채널 2 의 메뉴가 표시되는 상태에서 채널 1 을 끄려면 , [1] 을 눌러 채널 1 메뉴가 표시되도록 만든 다음, 다시 [1] 을 눌러 채널 1 을 꺼야 합니다.

수직 스케일을 조정하려면

1 √ √ 로 표시된 채널 키 위에 있는 커다란 노브를 돌려 채널의 수직 스케일 (volts/div) 을 설정할 수 있습니다.

미세 조정이 활성화되지 않았다면 수직 스케일 노브를 돌릴 때 아날로그 채널 스케일이 1-2-5 단계 순서로 (1:1 프로브를 연결한 경우) 변경됩니다 (" 수직 스케일 노브의 고속 / 미세 조정 설정을 변경하려면 " 62 페이지 참조).

아날로그 채널 Volts/Div 값은 상태 표시줄에 표시됩니다.

Volts/div 노브를 돌릴 때 신호를 확장하는 기본 모드는 채널의 접지 레벨을 기 준으로 한 수직 확장이지만, 디스플레이 중앙을 기준으로 확장되도록 이 설정을 변경할 수 있습니다. "중앙 또는 접지를 중심으로 "확장 "을 선택하려면 "271 페이지를 참조하십시오.

수직 위치를 조정하려면

 작은 수직 위치 노브 (◆) 를 돌려 채널의 파형을 디스플레이 위 또는 아래쪽으 로 이동합니다.

디스플레이의 오른쪽 상단 부분에 일시적으로 표시되는 전압 값은 디스플레이 의 수직 중심과 접지 레벨(♪) 아이콘 사이의 전압 차이를 나타냅니다. 또한 이 는 수직 확장이 접지를 기준으로 확장되도록 설정된 경우, 디스플레이의 수직 중심에서의 전압을 나타냅니다(" 중앙 또는 접지를 중심으로 " 확장 " 을 선택하 려면 " 271 페이지 참조).

채널 커플링을 지정하려면

커플링을 통해 채널의 입력 커플링을 AC 또는 DC 로 변경할 수 있습니다.

조언 채널을 DC 커플링으로 설정하면 간단히 접지 기호와의 거리를 확인하는 것만으 로 신호의 DC 성분을 빠르게 측정할 수 있습니다.

채널을 AC 커플링으로 설정하면 신호의 DC 성분이 제거되므로 , 신호의 AC 성 분을 더 높은 감도로 표시할 수 있습니다 . 3 수직 컨트롤

- 1 원하는 채널 키를 누릅니다.
- 2 채널 메뉴에서 커플링 소프트키를 눌러 입력 채널 커플링을 선택합니다.
 - DC DC 커플링은 대량의 DC 오프셋이 없는 최저 0 Hz 의 파형을 확인 하는 데 유용합니다.
 - AC AC 커플링은 대량의 DC 오프셋이 있는 파형을 확인하는 데 유용합니다.

AC 커플링을 선택하면 입력 파형에 직렬로 10 Hz 고역 통과 필터가 배치 되어 파형에서 모든 DC 오프셋 전압이 제거됩니다.

채널 커플링은 트리커 커플링과 별개라는 점을 참고하십시오 . 트리거 커플링을 변경하려면 " <mark>트리거 커플링을 선택하려면</mark> " 168 페이지을 참조하십시오 .

대역폭 제한을 지정하려면

- 1 원하는 채널 키를 누릅니다.
- 2 채널 메뉴에서 BW 제한 소프트키를 눌러 대역폭 제한을 활성화 또는 비활성 화합니다.

대역폭 제한이 설정되어 있는 경우, 해당 채널의 최대 대역폭은 약 20 MHz 가 됩니다. 주파수가 대역폭 제한 이하인 파형의 경우, 대역폭 제한을 설정하여 파 형에서 불필요한 고주파 노이즈를 제거할 수 있습니다. 대역폭 제한 기능으로 BW 제한이 켜진 채널의 트리거 신호 경로도 제한할 수 있습니다.

수직 스케일 노브의 고속 / 미세 조정 설정을 변경하려면

채널의 수직 스케일 노브를 누르면 (또는 채널 키를 누르고 채널 메뉴에서 □
 ▲ 소프트키 누름) 수직 스케일의 고속 조정과 미세 조정이 서로 전환됩니다

□ 세 조정을 선택한 경우,채널의 수직 감도를 더 작은 단위로 변경할 수 있습니 다. □ 세가 켜진 경우 채널 감도가 완전히 보정된 상태를 유지합니다.

수직 스케일 값은 디스플레이 상단의 상태 표시줄에 표시됩니다.

□ 세가 꺼진 경우, volts/div 노브를 돌리면 채널 감도가 1-2-5 단계 순서로 변 경됩니다. 파형을 반전하려면

- 1 원하는 채널 키를 누릅니다.
- 2 채널 메뉴에서 반전 소프트키를 눌러 선택한 채널을 반전시킵니다.

반전을 선택하면 표시되는 파형의 전압 값이 반전됩니다.

반전 기능은 채널의 표시 방식에 영향을 줍니다. 하지만 기본 트리거를 사용하 는 경우 오실로스코프에서 트리거 설정을 변경하여 동일한 트리거 포인트를 유 지하려고 시도하게 됩니다.

또한 채널을 반전시키면 파형 산술 메뉴 또는 다른 측정에서 선택한 산술 기능 의 결과도 변경됩니다.

아날로그 채널 프로브 옵션 설정

- 1 프로브에 연결된 채널 키를 누릅니다.
- 2 채널 메뉴에서 프로브 소프트키를 눌러 채널 프로브 메뉴를 표시합니다.

이 메뉴를 사용하여 연결된 프로브에 대해 감쇠 계수 및 측정 단위와 같은 추 가적인 프로브 파라미터를 선택할 수 있습니다.

프로브 검사 소프트키는 패시브 프로브 (예 : N2841A, N2842A, N2843A, N2862A/B, N2863A/B, N2889A, N2890A, 10073C, 10074C 또는 1165A 프로브) 의 보정 절차를 안내합니다.

관련 항목 • "채널 단위를 지정하려면 "63 페이지

- "프로브 감쇠를 지정하려면 "64 페이지
- "프로브 스큐를 지정하려면 "64 페이지

채널 단위를 지정하려면

- 1 프로브에 연결된 채널 키를 누릅니다.
- 2 채널 메뉴에서 프로브를 누릅니다.

3 수직 컨트롤

- 3 채널 프로브 메뉴에서 단위를 누른 다음, 아래와 같이 선택합니다.
 - 전압 전압 프로브일 경우
 - 전류 전류 프로브일 경우

채널 감도,트리거 레벨, 측정 결과, 산술 기능이 선택한 측정 단위에 따라 표시 됩니다.

프로브 감쇠를 지정하려면

정확한 측정 결과를 얻으려면 프로브 감쇠 계수를 올바르게 설정해야 합니다.

프로브 감쇠 계수를 설정하려면 :

- 1 채널 키를 누릅니다.
- 2 감쇠 계수를 지정할 방법을 선택할 때까지 프로브 소프트키를 눌러 비율 또는 데시벨을 선택합니다.
- 3 엔트리 노브 ♥를 돌려 연결된 프로브에 적용할 감쇠 계수를 설정합니다.

전압 값을 측정할 때는 감쇠 계수를 0.001:1 에서 10000:1 까지 1-2-5 순서로 설정할 수 있습니다.

전류 프로브로 전류 값을 측정할 때는 감쇠 계수를 1000 V/A 에서 0.0001 V/A 까지 설정할 수 있습니다.

감쇠 계수를 데시벨로 지정하는 경우 -60 dB 에서 80 dB 사이의 값을 선택할 수 있습니다.

단위로 전류를 선택하고 수동 감쇠 계수를 선택하면 단위뿐 아니라 감쇠 계수가 프로브 소프트키 위에 표시됩니다.

프로브 스큐를 지정하려면

ns 범위로 시간 간격을 측정할 경우, 케이블 길이의 근소한 차이도 측정에 영향 을 줄 수 있습니다. **스큐**를 사용하여 두 채널 사이의 케이블 지연 오류를 없앨 수 있습니다.

- 1 같은 포인트를 두 프로브로 프로빙합니다.
- 2 프로브 중 하나에 연결된 채널 키를 누릅니다.

3 채널 메뉴에서 프로브를 누릅니다.

4 채널 프로브 메뉴에서 스큐를 누른 다음, 원하는 스큐 값을 선택합니다.

각 아날로그 채널을 ±100 ns 까지 10 ps 단위로 총 200 ns 범위를 조정할 수 있습니다.

스큐 설정은 [Default Setup](기본 설정) 또는 [Auto Scale](자동설정)을 눌 러도 변경되지 않습니다.

3 수직 컨트롤

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

4 산술 파형

산술 파형을 표시하려면 / 67 산술 연산에 변환 함수 또는 필터를 실행하려면 / 69 산술 파형의 스케일 및 오프셋을 조정하려면 / 69 산술 파형의 단위 / 70 산술 연산자 / 70 산술 변환 / 72 산술 필터 / 88 산술 시각화 / 89

산술 함수는 아날로그 채널에서 실행할 수 있습니다. 결과 산술 파형은 밝은 보 라색으로 표시됩니다.

채널을 화면에 표시하지 않도록 선택한 경우에도 해당 채널에 대해 산술 기능을 사용할 수 있습니다.

다음과 같은 작업이 가능합니다.

- 아날로그 입력 채널에 대한 산술 연산 (더하기, 빼기 또는 곱하기) 수행
- 아날로그 입력 채널에 대한 변환 함수 (미분, 적분, FFT 또는 제곱근) 실행
- 산술 연산의 결과에 대해 변환 함수 실행

산술 파형을 표시하려면

1 전면 패널에 있는 [Math](함수) 키를 눌러 파형 산술 메뉴가 표시되도록 합니다.

4 산술 파형

- 2 함수 소프트키에 아직 f(t) 가 표시되지 않은 경우, 함수 소프트키를 누르고 f(t): 표시를 선택합니다.
- 3 연산자 소프트키를 사용하여 연산자 또는 변환을 선택합니다.

연산자에 대한 자세한 내용은 다음을 참조하십시오.

- "산술 연산자 "70 페이지
- "산술 변환" 72 페이지
- "산술 필터 "88 페이지
- "산술 시각화" 89 페이지
- 4 소스 1 소프트키를 사용하여 연산을 실행할 아날로그 채널을 선택합니다. 엔 트리 노브를 돌리거나 소스 1 소프트키를 반복적으로 누르면 선택 항목을 변 경할 수 있습니다. 변환 함수(미분, 적분, FFT 또는 제곱근)를 선택한 경 우 결과가 표시됩니다.
- 5 산술 연산자를 선택한 경우 소스 2 소프트키를 사용하여 산술 연산에 사용할 두 번째 소스를 선택합니다. 결과가 표시됩니다.
- 6 산술 파형의 크기를 조정하거나 재배치하려면 "산술 파형의 스케일 및 오프 셋을 조정하려면 "69 페이지을 참조하십시오.

산술 작업 힌트

아날로그 채널 또는 산술 함수가 잘리는 경우 (화면에 완전히 표시되지 않음) 결과로 표시되는 산술 기능도 잘릴 수 있습니다 .

함수가 표시된 후에 아날로그 채널을 끄면 산술 파형을 더 잘 볼 수 있습니다 .

각 산술 기능의 수직 스케일 및 오프셋을 조정하여 측정 고려사항을 더 쉽게 확 인할 수 있습니다.

산술 기능 파형은 [Cursors](커서) 및 / 또는 [Meas](측정) 을 사용하여 측정 할 수 있습니다 .

조언

산술 연산에 변환 함수 또는 필터를 실행하려면

더하기, 빼기 또는 곱하기 산술 연산에 변환 함수 ("산술 변환 "72 페이지 참조) 또는 필터 ("산술 필터 "88 페이지)를 실행하려면 :

- 1 함수 소프트키를 누르고 g(t): 내부를 선택합니다.
- 2 연산자, 소스 1, 소스 2 소프트키를 사용하여 산술 연산을 설정합니다.
- 3 함수 소프트키를 누르고 f(t): 표시를 선택합니다.
- 4 연산자 소프트키를 사용하여 변환 함수 또는 필터를 선택합니다.
- 5 소스 1 소프트키를 누르고 g(t) 를 소스로 선택합니다. 이전 단계에서 변환 함 수를 선택한 경우에만 g(t) 를 사용할 수 있습니다.

산술 파형의 스케일 및 오프셋을 조정하려면

1 [Math](산술) 키 오른쪽에 있는 멀티플렉스 스케일 및 위치 노브가 산술 파 형으로 선택되었는지 확인하십시오.

[Math](산술) 키 왼쪽에 있는 화살표에 불이 켜지지 않았다면 키를 누르십 시오.

2 [Math](산술) 키 바로 오른쪽에 있는 멀티플렉스 스케일 및 위치 노브를 사용하여 산술 파형의 크기를 조정하고 재배치할 수 있습니다.

· 차· 규 · · · · 산술 스케일 및 오프셋은 자동으로 설정됨

언제든지 현재 표시되는 산술 함수 정의가 변경되면, 함수의 스케일이 자동으로 최적의 수직 스케일 및 오프셋으로 조정됩니다. 함수의 스케일과 오프셋을 수동 으로 설정한 경우, 새 함수를 선택한 다음 원래 함수를 선택하면 원래 함수의 스 케일이 자동으로 조정됩니다.

관련 항목 • "산술 파형의 단위 "70 페이지

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

4 산술 파형

산술 파형의 단위

각 입력 채널의 단위는 채널의 프로브 메뉴에 포함된 **단위** 소프트키를 사용하여 전압 또는 전류로 설정할 수 있습니다. 산술 기능 파형에 적용되는 단위는 다음 과 같습니다.

산술 기능	단위	
더하기 또는 빼기	V 또는 A	
곱하기	V ² , A ² 또는 W(Volt-Amp)	
d/dt	V/s 또는 A/s(V/ 초 또는 A/ 초)	
∫dt	Vs 또는 As(V- 초 또는 A- 초)	
FFT	dB*(데시벨). "FFT 단위 " 81 페이지도 참조하십시오 .	
√(제곱근)	V ^{1/2} , A ^{1/2} 또는 W ^{1/2} (V-A)	
* FFT 소스가 채널 1, 2, 3 또는 4 일 때, 채널 단위가 전압, 채널 임피던스가 1 MΩ으로 설정되었다면 FFT 단위는 dBV로 표시됩니다. 채널 단위가 전압, 채널 임피던스가 50Ω으로 설정되었다면 FFT 단위는 dBm 으로 표시됩니다. 다른 모든 FFT 소스에 대해, 또는 소스 채널의 단위가 전류로 설정된 경우 FFT 단위는 dB 로 표시됩니다.		

2 개의 소스 채널이 사용되고 있지만 서로 유사하지 않은 단위로 설정되었으며 단위 조합을 분석할 수 없는 경우, U(정의되지 않음)라는 스케일 단위가 표시 됩니다.

산술 연산자

산술 연산자는 아날로그 입력 채널에 대한 산술 연산 (더하기, 빼기 또는 곱하 기)을 수행합니다.

- "더하기 또는 빼기 "71 페이지
- "곱하기 또는 나누기 "71 페이지

더하기 또는 빼기

더하기 또는 빼기를 선택하면 소스 1 및 소스 2 값이 포인트별로 더하기 또는 빼 기 되며, 결과가 표시됩니다.

빼기를 사용하여 미분 측정을 수행하거나 두 파형을 비교할 수 있습니다.

파형의 DC 오프셋이 오실로스코프 입력 채널의 다이나믹 레인지보다 클 경우, 대신 차동 프로브를 사용해야 합니다.

그림 5 채널 1 에서 채널 2 를 빼는 예

관련 항목 • "산술 파형의 단위 "70 페이지

곱하기 또는 나누기

곱하기 또는 나누기 산술 기능을 선택하면 소스 1 및 소스 2 값이 포인트별로 곱 하기 또는 나누기되며, 결과가 표시됩니다.

0으로 나누게 되면 출력 파형에 공백(0의 값)이 표시됩니다.

곱하기는 채널 중 하나가 전류에 비례할 경우 전력 관계를 확인할 때 유용합니 다. 4 산술 파형

산술 변환

산술 변환은 아날로그 입력 채널 또는 산술 연산의 결과에 대한 변환 함수 (미분

그림 6 채널 1 에 채널 2 를 곱하는 예

• "적분"74 페이지 • "FFT 측정 " 77 페이지

, 적분, FFT 또는 제곱근)를 수행합니다.

• "미분 "73 페이지

관련 항목 • "산술 파형의 단위 "70 페이지

- "제곱근" 83 페이지

사용하면 다음의 추가 변환을 사용할 수 있습니다.

- "Ax + B" 84 페이지
- "제곱" 85 페이지
- "절대값" 85 페이지
- "상용 로그" 86 페이지
- "자연 로그 "86 페이지
- "지수" 87 페이지
- " 기준 (Base) 10 지수 " 87 페이지

미분

d/dt(미분) 는 선택한 소스의 이산 시간 도함수를 계산합니다.

미분을 사용하여 파형의 순간 기울기를 측정할 수 있습니다. 예를 들어, 미분 함수를 사용하여 OP 앰프의 슬루 레이트를 측정할 수 있습니다.

미분은 노이즈에 매우 민감하므로, 수집 모드를 **평균**으로 설정하는 것이 좋습니 다 (" 수집 모드 선택 " 179 페이지 참조).

d/dt 는 "4 포인트에서 예상되는 평균 기울기 " 공식을 사용하여 선택한 소스의 도함수를 그립니다. 공식은 다음과 같습니다.

$$d_i = \frac{y_{i+4} + 2y_{i+2} - 2y_{i-2} - y_{i-4}}{8\Delta t}$$

여기서,

- d = 미분 파형
- y = 채널 1, 2, 3 또는 4 또는 g(t) (내부 산술 연산) 데이터 포인트
- i = 데이터 포인트 인덱스
- Δt = 포인트별 시간 차이

그림 7 미분 함수의 예

관련 항목 • "산술 연산에 변환 함수 또는 필터를 실행하려면 "69 페이지

• "산술 파형의 단위 "70 페이지

적분

∫ dt(적분)는 선택한 소스의 적분을 계산합니다. 적분을 사용하여 펄스의 에너지 를 전압 - 초 단위로 계산하거나 과형 아래의 면적을 측정할 수 있습니다.

∫ dt 는 "사다리꼴 법칙 " 을 사용하여 소스의 적분을 나타냅니다. 공식은 다음과 같습니다.

$$I_n = c_o + \Delta t \sum_{i=0}^n y_i$$

여기서,

- [= 적분 파형
- Δt = 포인트별 시간 차이

- y = 채널 1, 2, 3 또는 4 또는 g(t) (내부 산술 연산)
- co = 임의의 상수
- i = 데이터 포인트 인덱스

적분 연산자는 입력 신호의 DC 오프셋 보정 계수를 입력할 수 있는 **오프셋** 소프 트키를 제공합니다.. 적분 함수 입력의 작은 DC 오프셋 (또는 작은 오실로스코 프 보정 오류)은 적분 함수 출력의 상승 또는 하강을 초래할 수 있습니다. 이 DC 오프셋 보정을 통해 적분 파형을 평평하게 만들 수 있습니다.

그림 8 적분과 신호 오프셋

관련 항목 • "산술 연산에 변환 함수 또는 필터를 실행하려면 "69 페이지

• "산술 파형의 단위" 70 페이지

FFT 측정

FFT는 아날로그 입력 채널 또는 산술 연산 g(t)를 사용하여 고속 퓨리에 변환 을 계산하는 데 사용됩니다. FFT는 지정된 소스의 디지털화된 시간 기록을 구 해 주파수 영역으로 변환합니다. FFT 기능을 선택하면 FFT 스펙트럼이 오실 로스코프 디스플레이에 dBV 대 주파수의 그래프로 표시됩니다. 수평 축 판독값 은 시간에서 주파수 (Hertz)로 변경되고 수직 축 판독값은 전압에서 데시벨 (dB)로 변경됩니다.

FFT 기능은 크로스토크 문제또는 아날로그 파형에서 증폭기 비선형성으로 인 해 발생하는 왜곡 문제 를 찾거나, 아날로그 필터를 조정하는 데 사용됩니다.

FFT 파형을 표시하려면 :

1 [Math](산술) 키를 누르고, 산술 기능 소프트키를 누른 다음 f(t) 를 선택하고, 연산자 소프트키를 누른 다음 FFT 를 선택합니다.

- 소스 1 FFT 의 소스를 선택합니다. (g(t) 를 소스로 사용하는 방법에 대 한 내용은 "산술 연산에 변환 함수 또는 필터를 실행하려면 " 69 페이지 을 참조하십시오.)
- 스팬 디스플레이에 표시되는 (왼쪽에서 오른쪽으로) FFT 스펙트럼의 전체 스팬을 설정합니다. 스팬을 10으로 나누면 눈금당 Hertz 수를 계산 할 수 있습니다. 스팬을 사용 가능한 최대 주파수보다 높게 설정할 수 있 으며, 이 경우 표시되는 스펙트럼이 전체 화면보다 작습니다. 스팬 소프트 키를 누른 다음, 엔트리 노브를 돌려 원하는 디스플레이의 주파수 스팬을 설정합니다.
- 중심 FFT 스펙트럼 주파수가 디스플레이의 중심 수직 그리드 라인에 표 시되도록 설정합니다. 중심을 사용 가능한 최대 주파수보다 높게 또는 그 절반의 값으로 설정할 수 있으며, 이 경우 표시되는 스펙트럼이 전체 화면 보다 작습니다. 중심 소프트키를 누른 다음, 엔트리 노브를 돌려 원하는 디스플레이의 중심 주파수를 설정합니다.
- 스케일 FFT 에 dB/div(데시벨 / 구간) 로 표현되는 자체 수직 스케일 계 수를 설정할 수 있습니다. "산술 파형의 스케일 및 오프셋을 조정하려면 " 69 페이지를 참조하십시오.
- 오프셋 FFT 에 사용할 자체 오프셋을 설정할 수 있습니다. 오프셋 값은 dB 단위이며, 디스플레이의 중심 수평 그리드 라인으로 표현됩니다. "산 술 파형의 스케일 및 오프셋을 조정하려면 " 69 페이지를 참조하십시오.

• **기타 FFT** - 기타 FFT 설정 메뉴를 표시합니다.

2 기타 FFT 소프트키를 누르면 추가 FFT 설정이 표시됩니다.

- 원도우 FFT 입력 신호에 적용할 창을 선택합니다.
 - 해닝 정확한 주파수 측정을 수행하거나, 서로 인접한 두 주파수를 분 석할 수 있는 창.
 - 플랫 탑 주파수 피크의 정확한 진폭을 측정할 수 있는 창.
 - 직사각형 주파수 분해능과 진폭 정확도가 뛰어나지만, 누설 현상이 없을 경우에만 사용해야 합니다. 의사 임의 노이즈, 임펄스, 사인 버스 트 및 감소 사인파와 같은 자체 윈도잉 파형에 사용합니다.
 - Blackman Harris 직사각형 창과 비교할 때 문제 해결 시간이 감소되며, 낮은 이차 돌출부 (lobe) 로 인해 작은 펄스도 감지할 수 있도록 성능이 향상됩니다.
- 수직 단위 FFT 수직 스케일의 단위로 데시벨 또는 V RMS 를 선택할 수 있습니다.
- 자동 설정 주파수 스팬 및 중심을 사용 가능한 전체 스펙트럼이 표시될 수 있는 값으로 설정합니다. 사용 가능한 최대 주파수는 FFT 샘플링 속도 의 절반이며, 이는 time/div 설정의 함수입니다. FFT 분해능은 샘플링 속 도와 FFT 포인트 수의 몫입니다 (f_S/N). 현재 FFT 해상도가 소프트키 위 에 표시됩니다.

스케일 및 오프셋 관련 고려사항

FFT 스케일 또는 오프셋 설정을 수동으로 변경하지 않은 경우, 수평 스케일 노 브를 돌리면 스팬 및 중심 주파수 설정이 전체 스펙트럼을 최적으로 볼 수 있도 록 자동으로 변경됩니다.

스케일 또는 오프셋을 수동으로 설정한 경우, 수평 스케일 노브를 돌려도 스팬 또는 중심 주파수 설정이 변하지 않으므로 특정 주파수 주변의 세부 정보를 더 잘 볼 수 있습니다.

FFT **자동 설정**소프트키를 누르면 파형의 스케일이 자동으로 재조정되며, 스팬 과 중심 설정도 자동으로 수평 스케일 설정을 추적하게 됩니다. 3 커서 측정을 실행하려면 [Cursors](커서) 키를 누르고 소스 소프트키를 산 술: f(t) 로 설정하십시오.

X1 및 X2 커서를 사용하여 주파수 값과 두 주파수 값 사이의 차이 (ΔX)를 측 정할 수 있습니다. Y1 및 Y2 커서를 사용하여 dB 단위의 진폭과 진폭 사이의 차이 (ΔY)를 측정할 수 있습니다.

4 다른 측정을 실행하려면 [Meas](측정) 키를 누르고 소스 소프트키를 산술: f(t) 로 설정하십시오.

FFT 파형에 대해 피크 대 피크, 최대, 최소, 평균 dB 측정을 실행할 수 있습니다. 또한 Y 최대값에서 X 측정 기능을 사용하여 파형 최대값의 최초 발생 포인트에서 주파수 값을 찾을 수 있습니다.

다음 FFT 스펙트럼은 4 V, 75 kHz 사각파를 채널 1 에 연결하여 얻은 것입니다 . 수평 스케일은 50 µs/div, 수직 감도는 1 V/div, 단위 / 눈금은 20 dBV, 오프셋 은 -60.0 dBV, 중심 주파수는 250 kHz, 주파수 스팬은 500 kHz, 윈도우는 해 닝으로 설정합니다.

관련 항목 • "산술 연산에 변환 함수 또는 필터를 실행하려면 "69 페이지

- "FFT 측정 힌트" 80 페이지
- "FFT 단위 " 81 페이지
- "FFT DC 값 " 81 페이지

- "FFT 앨리어싱" 81 페이지
- "FFT 스펙트럼 누설 " 83 페이지
- "산술 파형의 단위 "70 페이지

FFT 측정 힌트

FFT 기록용으로 수집할 수 있는 포인트 수는 최대 65,536 개이며, 주파수 스팬 이 최대가 되면 모든 포인트가 표시됩니다. FFT 스펙트럼이 표시된 후에는 주 파수 스팬과 중심 주파수 컨트롤을 스펙트럼 분석기의 컨트롤과 거의 같은 방식 으로 사용하여 관심 주파수를 훨씬 자세히 검사할 수 있습니다. 파형의 원하는 부분을 화면 중앙에 배치하고 주파수 스팬을 낮추면 디스플레이 해상도가 증가 합니다. 주파수 스팬이 낮아졌으므로 표시되는 포인트 수가 줄어들며, 디스플 레이가 확대됩니다.

FFT 스펙트럼이 표시될 때 [Math](산술) 및 [Cursors](커서) 키를 사용하여 측정 기능과 FFT 메뉴의 주파수 영역 제어 기능을 전환할 수 있습니다.

FFT 해상도

FFT 분해능은 샘플링 속도와 FFT 포인트 수의 몫입니다 (f_S/N). FFT 포인트의 수가 고정되어 있으므로 (최대 65,536 개), 샘플링 속도가 낮을수록 분해능이 높아집니다 .

더 높은 time/div 설정을 선택하여 유효 샘플링 속도를 낮추면 FFT 디스플레이 의 저주파 분해능이 높아지며 또한 앨리어스가 표시될 가능성도 높아집니다. FFT 의 분해능은 유효 샘플링 속도를 FFT 에 포함된 포인트 수로 나눈 값입니 다. 윈도우의 형상이 인접한 두 주파수를 분석할 수 있는 FFT 의 역량에서 실질 적인 제한 요소가 되므로, 디스플레이의 실제 분해능은 이 정도로 세밀하지 못 합니다. 인접한 두 주파수를 분석하는 FFT 의 역량을 테스트할 수 있는 좋은 방 법은 진폭 변조 사인파의 측파대 (sideband)를 검사하는 것입니다.

피크 측정에서 최상의 수직 정밀도를 확보하려면 :

- 프로브 감쇠가 올바르게 설정되었는지 확인하십시오. 피연산자가 채널일 경 우 프로브 감쇠는 채널 메뉴에서 설정할 수 있습니다.
- 입력 신호가 거의 전체 화면이 되지만 잘리지는 않도록 소스 감도를 설정합니다.
- 플랫 탑 윈도우를 사용합니다.
- FFT 감도를 2 dB/div 와 같은 감도 범위로 설정합니다.

피크에서 최상의 주파수 정밀도를 확보하려면:

- 해닝 윈도우를 사용합니다.
- 커서를 사용하여 관심 주파수에 X 커서를 배치합니다.
- 커서가 잘 배치될 수 있도록 주파수 스팬을 조정합니다.
- 커서 메뉴로 돌아와 X 커서를 미세 조정합니다.

FFT 사용에 대한 자세한 내용은 Keysight 애플리케이션 노트 243, 신호 분석 의 기초(http://literature.cdn.keysight.com/litweb/pdf/5952-8898E.pdf)를 참조하십시오. Robert A. Witte 의 저서 *Spectrum and Network Measurements* 4 장에서 추가적인 정보를 얻을 수 있습니다.

FFT 단위

0 dBV 는 1 Vrms 사인파의 진폭입니다. FFT 소스가 채널 1 또는 채널 2(또는 4 채널 모델의 경우 채널 3 또는 4)일 때, 채널 단위를 전압으로, 채널 임피던 스를 1MΩ으로 설정하면 FFT 단위가 dBV 로 표시됩니다.

채널 단위가 전압, 채널 임피던스가 50Ω으로 설정되었다면 FFT 단위는 dBm 으로 표시됩니다.

다른 모든 FFT 소스에 대해, 또는 소스 채널의 단위가 전류로 설정된 경우 FFT 단위는 dB 로 표시됩니다.

FFT DC 값

FFT 계산은 올바르지 않은 DC 값을 산출합니다 . 이 값에는 중앙 화면의 오프 셋이 고려되지 않았습니다 . DC 주변의 주파수 성분을 정확하게 나타낼 수 있도 록 DC 값은 보정되지 않습니다 .

FFT 앨리어싱

FFT 를 사용할 때는 주파수 앨리어싱에 주의해야 합니다. 그러려면 작업자가 주파수 영역에 포함되어야 할 성분에 대해 일정 수준의 지식을 갖추어야 하며, FFT 측정을 수행할 때의 샘플링 속도, 주파수 스팬, 오실로스코프의 수직 대역 폭도 고려해야 합니다. FFT 해상도 (샘플링 속도와 FFT 포인트 수의 몫)는 FFT 메뉴가 표시될 때 소프트키 바로 위에 표시됩니다.

주파수 영역 내의 나이키스트 주파수 및 앨리어싱

나이키스트 주파수는 실시간 디지털화 오실로스코프가 앨리어싱 없이 수집할 수 있는 최대 주파수를 의미합니다. 이 주파수는 샘플링 속도의 절반에 해당합 니다. 나이키스트 주파수를 넘는 주파수는 언더샘플링되며, 이는 앨리어싱을 일으킵니다. 주파수 영역을 볼 때 앨리어싱이 적용된 주파수 성분이 해당 주파 수에서 접혀지므로 나이키스트 주파수는 폴딩 (folding) 주파수라고도 불립니다

앨리어싱은 신호 내의 주파수 성분이 샘플링 속도의 절반보다 높을 때 발생합니다. FFT 스펙트럼이 이 주파수에 의해 제한되므로, 이보다 높은 성분은 낮은 (앨리어싱이 적용된) 주파수에 표시됩니다.

다음 그림에 앨리어싱이 예시되어 있습니다. 표시된 예는 다수의 고조파가 포함 된 990 Hz 사각파 스펙트럼입니다. 샘플링 속도는 100kSa/s로 설정되었으며, 오실로스코프에 해당 스펙트럼이 표시됩니다. 표시된 파형은 나이키스트 주파 수를 초과하는 입력 신호의 성분이 디스플레이에 미러링(앨리어싱 적용)되어 오른쪽 에지에서 반사되는 것을 보여 줍니다.

그림 9 앨리어싱

주파수 ≈ 스팬이 0 에서 나이키스트 주파수까지 범위이므로, 앨리어싱을 방지 하는 최선의 방법은 주파수 스팬이 입력 신호에 존재하는 유효 에너지의 주파수 보다 확실히 크도록 만드는 것입니다.

FFT 스펙트럼 누설

FFT 연산에서는 시간 기록이 반복되는 것으로 가정합니다. 기록에 샘플링되는 과형의 정수 사이클이 존재하지 않을 경우, 기록 말미에 불연속성이 생성됩니다 . 이를 누설이라고 부릅니다. 스펙트럼 누설을 최소화하려면 신호의 시작과 종 료 부분에서 0 에 완만하게 접근하는 윈도우를 FFT 의 필터로 채용해야 합니다 . FFT 메뉴에는 해닝, 플랫 탑, 직사각형, Blackman-Harris 의 4 가지 윈도우 가 제공됩니다. 누설에 대한 자세한 내용은 Keysight 애플리케이션 노트 243, 신호 분석의 기초

(http://literature.cdn.keysight.com/litweb/pdf/5952-8898E.pdf) 를 참조하십 시오.

제곱근

제곱근 (√) 은 선택한 소스의 제곱근을 계산합니다.

특정 입력에 대해 변환이 정의되지 않은 경우 , 함수 출력에 공백 (0 의 값) 이 표 시됩니다 .

그림 10 √(제곱근)의 예

- 관련 항목 "산술 연산에 변환 함수 또는 필터를 실행하려면 " 69 페이지
 - "산술 파형의 단위 "70 페이지
 - Ax + B

Ax + B 함수 (PLUS 라이센스를 통해 사용 가능)를 통해 기존 입력 소스에 게 인과 오프셋을 적용할 수 있습니다.

그림 11 Ax + B 의 예

게인 (A) 소프트키를 사용하여 게인을 지정합니다.

오프셋 (B) 소프트키를 사용하여 오프셋을 지정합니다.

Ax + B 함수는 출력이 입력과 다를 수 있다는 점에서 확대 산술 시각화 함수와 다릅니다.

관련 항목 • "확대 "90 페이지

제곱

제곱 함수 (PLUS 라이센스를 통해 사용 가능)는 선택한 소스의 제곱을 포인트 별로 계산하고 결과를 표시합니다.

소스 소프트키를 눌러 신호 소스를 선택하십시오.

관련 항목 • "제곱근" 83 페이지

절대값

절대값 함수 (PLUS 라이센스를 통해 사용 가능)는 입력에 포함된 음의 값을 양 의 값으로 바꾸고 결과 파형을 표시합니다.

그림 12 절대값의 예

관련 항목 • "제곱" 85 페이지

상용 로그

상용 로그 (log) 함수 (PLUS 라이센스를 통해 사용 가능)는 입력 소스의 변환 을 실행합니다. 특정 입력에 대해 변환이 정의되지 않은 경우, 함수 출력에 공 백(0의 값)이 표시됩니다.

관련 항목 • "자연 로그 " 86 페이지

자연 로그

자연 로그 (ln) 함수 (PLUS 라이센스를 통해 사용 가능)는 입력 소스의 변환을 실행합니다. 특정 입력에 대해 변환이 정의되지 않은 경우, 함수 출력에 공백 (0의 값)이 표시됩니다.

그림 13 자연 로그의 예

관련 항목 • "상용 로그" 86 페이지

지수

지수 (e^x) 함수 (PLUS 라이센스를 통해 사용 가능)는 입력 소스의 변환을 실행합니다.

관련 항목 • "기준 (Base) 10 지수 " 87 페이지

기준 (Base) 10 지수

Base(기준) 10 지수 (10^x) 함수 (PLUS 라이센스를 통해 사용 가능)는 입력 소스의 변환을 실행합니다.

그림 14 Base(기준) 10 지수의 예

관련 항목 • "지수" 87 페이지

산술 필터

PLUS 라이센스를 사용하면 산술 필터를 사용하여 아날로그 입력 채널 또는 산 술 연산 결과에 대한 하이패스 또는 로우패스 필터를 적용한 결과의 파형을 만 들 수 있습니다.

• "하이패스 및 로우패스 필터 "88 페이지

하이패스 및 로우패스 필터

하이패스 또는 로우패스 필터 함수 (PLUS 라이센스를 통해 사용 가능)는 선택 한 소스 파형에 필터를 적용하고 산술 파형에 결과를 표시합니다.

하이패스 필터는 단극 하이패스 필터입니다.

로우패스 필터는 4 차 Bessel-Thompson 필터입니다.

대역폭 소프트키를 사용하여 필터의 -3 dB 컷오프 주파수를 선택합니다.

참 고 입력 신호의 나이키스트 (Nyquist) 주파수와 선택한 -3 dB 컷오프 주파수의 비 율은 출력에서 사용 가능한 포인트 수에 영향을 주며 , 경우에 따라 출력 파형에 포인트가 없을 수도 있습니다 .

그림 15 로우패스 필터의 예

산술 시각화

PLUS 라이센스를 사용하면 캡처한 데이터와 측정 값에 대한 다른 관점을 제공 하는 시각화 연산 함수를 적용할 수 있습니다.

- "확대" 90 페이지
- " 측정 트렌드 " 90 페이지
- " 로직 버스 타이밍 도표 " 92 페이지
- " 로직 버스 상태 도표 " 93 페이지

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

확대

확대 산술 함수 (PLUS 라이센스를 통해 사용 가능)를 사용하면 기존 입력 소스 를 다양한 수직 설정으로 표시하여 더 자세한 수직 부분 정보를 확인할 수 있습 니다.

그림 16 확대의 예

관련 항목 • "Ax + B" 84 페이지

측정 트렌드

측정 트렌드 산술 함수 (PLUS 라이센스를 통해 사용 가능)는 파형이 화면에서 진행되는 동안 측정 임계값 설정을 기준으로 파형의 측정값을 표시합니다. 매 사이클마다 측정이 실행되며, 사이클에 해당하는 값이 화면에 표시됩니다.

그림 17 측정 트렌드의 예

유형: 소프트키를 사용하여 트렌드를 볼 측정을 선택합니다. 다음 측정에 대한 트렌드 값을 표시할 수 있습니다.

- 평균
- RMS AC
- 비율
- 주기
- 주파수
- + 폭
- 폭
- 듀티 사이클
- 상승 시간
- 하강 시간

임계값 소프트키를 사용하여 측정 임계값 메뉴를 열 수 있습니다. "측정 임계값 " 213 페이지를 참조하십시오.

파형의 일부에 대해 측정을 실행할 수 없다면 측정이 이루어지기 전까지 트렌드 함수의 출력이 공백(값이 없음)이 됩니다.

로직 버스 타이밍 도표

로직 버스 타이밍 도표 함수 (PLUS 라이센스를 통해 사용 가능)는 버스 데이터 값을 아날로그 파형 (D/A 변환과 유사)으로 표시합니다. 버스 값이 전환 중일 때 함수 출력은 버스의 최종 안정 상태에 해당합니다.

그림 18 로직 버스 타이밍 도표의 예

단위 / 코드 소프트키를 사용하여 버스 데이터 값의 각 증분에 해당하는 아날로 그 값을 지정합니다.

0 오프셋 소프트키를 사용하여 버스 데이터 값 0 에 해당하는 아날로그 값을 지 정합니다.

단위 소프트키를 사용하여 데이터 버스가 나타낼 값의 유형 (전압, 전류 등)을 지정합니다.

관련 항목 • "로직 버스 상태 도표" 93 페이지

로직 버스 상태 도표

로직 버스 상태 도표 함수 (PLUS 라이센스를 통해 사용 가능)는 클럭 신호의 에지에서 샘플링된 버스 데이터 값을 아날로그 파형 (D/A 변환과 유사)으로 표 시합니다.

그림 19 로직 버스 상태 도표의 예

클럭 소프트키를 눌러 클럭 신호를 선택합니다.

기울기 소프트키를 사용하여 사용할 클럭 신호의 에지를 선택합니다.

추가 도표 소프트키를 사용하여 각 버스 값 증분에 해당하는 아날로그 값, 버스 값 0 에 해당하는 아날로그 값, 데이터 버스 도표가 나타낼 값의 유형 (전압, 전 류 등)을 지정하는 하위 메뉴를 열 수 있습니다.

단위 / 코드 소프트키를 사용하여 버스 데이터 값의 각 증분에 해당하는 아날로 그 값을 지정합니다.

0 오프셋 소프트키를 사용하여 버스 데이터 값 0 에 해당하는 아날로그 값을 지 정합니다.

단위 소프트키를 사용하여 데이터 버스가 나타낼 값의 유형 (전압, 전류 등)을 지정합니다.

관련 항목 • " 로직 버스 타이밍 도표 " 92 페이지

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

5 기준 파형

파형을 기준 파형 위치에 저장하려면 / 95 기준 파형을 표시하려면 / 96 기준 파형의 스케일 및 위치를 조정하려면 / 97 기준 파형 스큐를 조정하려면 / 97 기준 파형 정보를 표시하려면 / 98 기준 파형 파일을 USB 저장 장치에 저장 / 호출하려면 / 98

아날로그 채널 또는 산술 파형을 오실로스코프의 기준 파형 위치 두 곳 중 하나 에 저장할 수 있습니다. 그런 다음 기준 파형을 표시하여 다른 파형과 비교할 수 있습니다. 한 번에 하나의 기준 파형만 표시할 수 있습니다.

멀티플렉스 노브를 기준 파형에 할당한 경우 ([Ref](기준) 키를 눌렀을 때 그 왼쪽에 있는 LED 에 불이 켜진 경우에 해당), 노브를 사용하여 기준 파형의 스 케일 및 위치를 설정할 수 있습니다. 또한 기준 파형에 대한 스큐 조정도 가능합 니다. 기준 파형 스케일, 오프셋, 스큐 정보를 오실로스코프 디스플레이에 옵 션으로 포함시킬 수 있습니다.

아날로그 채널, 산술 또는 기준 파형을 USB 저장 장치에 기준 파형 파일로 저장 할 수 있습니다. 기준 파형 파일을 USB 저장 장치에서 기준 파형 위치 중 한 곳 으로 불러올 수 있습니다.

파형을 기준 파형 위치에 저장하려면

1 [Ref](기준) 키를 눌러 기준 파형을 켭니다.

- 2 기준 파형 메뉴에서 기준 소프트키를 누른 다음, 엔트리 노브를 돌려 원하는 기준 파형 위치를 선택합니다.
- 3 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 소스 파형을 선택합니다.

5 기준 파형

- 4 저장 위치 R1/R2 소프트키를 누르면 파형이 기준 파형 위치에 저장됩니다.
- 참 고 기준 파형은 비휘발성이며, 전원을 껐다가 켜거나 기본 설정을 실행해도 원 래대로 유지됩니다.
- 기준 파형 위치 1 [Ref](기준) 키를 눌러 기준 파형을 켭니다.
- 를 삭제하려면 2 기준 파형 메뉴에서 **기준** 소프트키를 누른 다음, 엔트리 노브를 돌려 원하는 기준 파형 위치를 선택합니다.
 - 3 삭제 R1/R2 소프트키를 누르면 기준 파형 위치가 삭제됩니다.

또한 출고 시 기본 설정 또는 보안 삭제를 실행해도 기준 파형이 삭제됩니다 (18 장, "저장 / 호출 (설정, 화면, 데이터)," 페이지 시작 247 쪽 참조).

기준 파형을 표시하려면

- 1 [Ref](기준) 키를 눌러 기준 파형을 켭니다.
- 2 기준 파형 메뉴에서 기준 소프트키를 누른 다음, 엔트리 노브를 돌려 원하는 기준 파형 위치를 선택합니다.
- 3 그런 다음 기준 소프트키를 다시 눌러 기준 파형 표시를 활성화 / 비활성화합니다.

한 번에 하나의 기준 파형만 표시할 수 있습니다.

관련 항목 • "기준 파형 정보를 표시하려면 "98 페이지

기준 파형의 스케일 및 위치를 조정하려면

 [Ref](기준)키 오른쪽에 있는 멀티플렉스 스케일 및 위치 노브가 기준 파형 으로 선택되었는지 확인하십시오.

[Ref](기준) 키 왼쪽에 있는 화살표에 불이 켜지지 않았다면 키를 누르십시오.

- 2 위쪽 멀티플렉스 노브를 돌려 기준 파형 스케일을 조정합니다.
- 3 아래쪽 멀티플렉스 노브를 돌려 기준 파형 위치를 조정합니다.

기준 파형 스큐를 조정하려면

기준 파형이 표시된 후에 스큐를 조정할 수 있습니다.

1 원하는 기준 파형을 표시합니다 ("기준 파형을 표시하려면 "96 페이지 참조).

5 기준 파형

2 스큐 소프트키를 누른 다음, 엔트리 노브를 돌려 기준 파형 스큐를 조정합니 다.

기준 파형 정보를 표시하려면

- 1 [Ref](기준) 키를 눌러 기준 파형을 켭니다.
- 2 기준 파형 메뉴에서 기타 옵션 소프트키를 누릅니다.
- 3 기준 파형 기타 옵션 메뉴에서 디스플레이 정보 소프트키를 눌러 오실로스코 프 디스플레이에 기준 파형 정보를 활성화 또는 비활성화합니다.
- 4 투명 소프트키를 눌러 투명 정보 배경을 활성화 또는 비활성화할 수 있습니다

이 설정은 또한 마스크 테스트 통계 등과 같은 디스플레이의 다른 오실로스코 프 정보에도 사용됩니다.

기준 파형 파일을 USB 저장 장치에 저장 / 호출하려면

아날로그 채널, 산술 또는 기준 파형을 USB 저장 장치에 기준 파형 파일로 저장 할 수 있습니다. " 기준 파형 파일을 USB 저장 장치에 저장하려면 " 253 페이지 를 참조하십시오.

기준 파형 파일을 USB 저장 장치에서 기준 파형 위치 중 한 곳으로 불러올 수 있습니다. " 기준 파형 파일을 USB 저장 장치에서 호출하려면 " 256 페이지를 참조하십시오. Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

6 디지털 채널

테스트 대상 장치에 디지털 프로브를 연결하려면 / 99 디지털 채널을 사용한 파형 수집 / 103 자동설정을 사용하여 디지털 채널을 표시하려면 / 103 디지털 파형 표시 내용 해석하기 / 104 모든 디지털 채널을 켜거나 끄려면 / 106 채널 그룹을 켜거나 끄려면 / 106 딘지털 채널의 표시 크기를 변경하려면 / 105 디지털 채널의 위치를 변경하려면 / 107 디지털 채널의 로직 임계값을 변경하려면 / 106 디지털 채널의 로직 임계값을 변경하려면 / 108 디지털 채널을 버스로 표시하려면 / 108

이 장에서는 MSO(혼합 신호 오실로스코프)의 디지털 채널을 사용하는 방법을 설명합니다.

디지털 채널은 MSOX2000 X 시리즈 모델과 DSOX2MSO 업그레이드 라이센스 가 설치된 DSOX2000 X 시리즈 모델에서 사용할 수 있습니다.

디지털 채널 및 직렬 디코딩을 동시에 켤 수 없습니다. [Serial] 직렬 키는 [Digital] 디지털 키보다 우선합니다. 디지털 채널이 켜진 경우 직렬 트리거를 사용할 수 있습니다.

테스트 대상 장치에 디지털 프로브를 연결하려면

1 필요할 경우 테스트 대상 장치에 대한 전원 공급을 차단하십시오.

테스트 대상 장치에 전원 공급을 차단하면 프로브를 연결할 때 우발적으로 두 선을 연결하여 발생될 수 있는 손상을 방지할 수 있습니다. 프로브에는 전압 이 나오지 않으므로 오실로스코프는 전원을 켠 채로 두어도 좋습니다.

2 디지털 프로브 케이블을 혼합 신호 오실로스코프의 전면 패널에 있는 DIGITAL Dn - D0 커넥터에 연결하십시오. 디지털 프로브 케이블은 키가 적 용되어 있으므로 한 방향으로만 연결할 수 있습니다. 오실로스코프의 전원을 끌 필요는 없습니다.

주 의

/ 디지털 채널용 프로브 케이블

혼합 신호 오실로스코프와 함께 제공되는 Keysight 로직 프로브 및 액세서 리만 사용하십시오 ("프로브 및 액세서리" 301 페이지 참조).

3 프로브 그래버를 사용하여 각 채널 세트 (각 포드)에 접지 리드를 연결하십 시오. 접지 리드는 오실로스코프에 대한 신호 충실도를 높임으로써 정확한 측정을 보장합니다.

4 그래버를 프로브 리드 중 하나에 연결하십시오. (그림에는 분명히 볼 수 있 도록 다른 프로브 리드가 생략됨)

5 그래버를 테스트하려는 회로 내의 노드에 연결하십시오.

6 고속 신호의 경우 접지 리드를 프로브 리드에 연결하고, 그래버를 접지 리드 에 연결한 다음, 테스트 대상 장치 내의 접지에 그래버를 연결하십시오.

7 모든 관심 지점이 연결될 때까지 위 단계를 반복합니다.

디지털 채널을 사용한 파형 수집

[Run/Stop](실행/정지) 또는 [Single](싱글)을 눌러 오실로스코프를 실행시 키면, 오실로스코프에서 각 입력 프로브의 입력 전압을 검사합니다. 트리거 조 건이 만족되면 오실로스코프가 트리거하고 수집 결과를 표시합니다.

디지털 채널의 경우, 매번 오실로스코프에서 샘플을 수집하고 입력 전압을 로직 임계값과 비교합니다. 전압이 임계값보다 높을 경우 오실로스코프가 샘플 메모 리에 1 을 저장하고, 낮을 경우에는 0 을 저장합니다.

자동설정을 사용하여 디지털 채널을 표시하려면

신호가 디지털 채널에 연결되었을 때는 — 접지 리드가 연결되었는지 확인하십 시오.— 자동설정에서 디지털 채널을 신속하게 구성하고 표시합니다.

• 계측기를 신속하게 구성하려면 [AutoScale](자동설정) 키를 누르십시오.

그림 20 예: 디지털 채널의 자동설정 (MSO 모델에 한함)

활성 신호가 있는 모든 디지털 채널이 표시됩니다. 활성 신호가 없는 디지털 채 널은 꺼집니다.

자동설정의 효과를 실행 취소하려면 다른 키를 누르기 전에 자동설정 실행 취
소 소프트키를 누르십시오.

이는 실수로 [AutoScale](자동설정) 키를 누르거나 자동설정에서 선택한 설정 이 마음에 들지 않을 경우에 유용한 기능입니다. 오실로스코프가 이전 설정으로 복귀됩니다. "자동설정의 작동 원리 "29 페이지도 참조하십시오.

계측기를 출고 시 기본 구성으로 설정하려면 [Default Setup](기본 설정) 키를 누르십시오.

디지털 파형 표시 내용 해석하기

다음 그림은 디지털 채널의 일반적인 표시 형태를 보여 줍니다.

작동 표시기 디지털 채널이 켜지면 디스플레이 하단에 있는 상태 표시줄에 작동 표시기가 표 시됩니다.디지털 채널은 항상 높음([●]), 항상 낮음 (_●) 또는 능동 전환 로직 상 태(↓) 일 수 있습니다. 꺼진 채널은 작동 표시기에서 음영 처리됩니다.

디지털 채널의 표시 크기를 변경하려면

1 [Digital](디지털) 키를 누릅니다.

 2 크기 (, , , , , , , ,) 소프트키를 누르고 디지털 채널의 표시 방식을 선택합니다.
크기 조정 컨트롤을 사용하여 디스플레이에서 디지털 트레이스를 확장하거나 압축하여 더 보기 편하게 만들 수 있습니다. 6 디지털 채널

단일 채널을 켜거나 끄려면

- 디지털 채널 메뉴가 표시된 상태에서 엔트리 노브를 돌려 팝업 메뉴에서 원하 는 채널을 선택합니다.
- 2 엔트리 노브를 누르거나 팝업 메뉴 바로 아래에 있는 소프트키를 눌러 선택한 채널을 켜거나 끌 수 있습니다.

모든 디지털 채널을 켜거나 끄려면

1 [Digital](디지털) 키를 눌러 디지털 채널 표시 상태를 전환합니다. 디지털 채널 메뉴가 소프트키 위에 표시됩니다.

디지털 채널을 끄려고 할 때, 디지털 채널 메뉴가 아직 표시되지 않은 상태라면 [Digital](디지털) 키를 두 번 눌러 디지털 채널을 꺼야 합니다. 한 번 누르면 디 지털 채널 메뉴가 표시되고, 두 번째로 누르면 채널이 꺼집니다.

채널 그룹을 켜거나 끄려면

- 1 디지털 채널 메뉴가 아직 표시되지 않은 경우 전면 패널에 있는 [Digital](디 지털) 키를 누릅니다.
- 2 D7 D0 그룹에 해당하는 꺼짐 (또는 켜짐) 소프트키를 누릅니다.

소프트키를 누를 때마다 소프트키의 모드가 켜짐과 꺼짐 사이에서 전환됩니다.

디지털 채널의 로직 임계값을 변경하려면

- 1 [Digital](디지털) 키를 눌러 디지털 채널 메뉴를 표시합니다.
- 2 임계값 소프트키를 누릅니다.
- 3 D7 ~ D0 소프트키를 누른 다음, 로직 군 사전 설정을 선택하거나 사용자를 선택하여 자체 임계값을 정의합니다.

로직 군	임계 전압
TTL	+1.4 V
СМОЅ	+2.5 V
ECL	-1.3 V
사용자	-8 V ~ +8 V 로 가변

설정한 임계값은 선택한 D7 ~ D0 그룹 내의 모든 채널에 적용됩니다. 필요할 경우, 두 채널 그룹을 각각 다른 임계값으로 설정할 수 있습니다.

설정 임계값보다 큰 값은 높음 (1) 이 되고 설정 임계값보다 작은 값은 낮음 (0) 이 됩니다.

임계값 소프트키가 **사용자**로 설정된 경우 채널 그룹에 해당하는 **사용자** 소프트 키를 누른 다음 엔트리 노브를 돌려 로직 인계값을 설정합니다. 각 채널 그룹에 해당하는 **사용자** 소프트키가 하나씩 있습니다.

디지털 채널의 위치를 변경하려면

 키 오른쪽에 있는 멀티플렉스 스케일 및 위치 노브가 디지털 채널로 선택되었 는지 확인하십시오.

[Digital](디지털) 키 왼쪽에 있는 화살표에 불이 켜져 있지 않으면 키를 누르십시오.

2 멀티플렉스 선택 노브를 사용하여 채널을 선택합니다.

선택한 파형이 빨간색으로 강조 표시됩니다.

3 멀티플렉스 위치 노브를 사용하여 선택한 채널 파형을 이동합니다.

채널 파형이 다른 채널 파형 위에 재배치되는 경우, 트레이스의 왼쪽 에지에 있는 표시기가 Dnn 표시 (여기서 nn은 하나 또는 두 자리의 채널 번호)에서 D* 로 바뀝니다. "*" 기호는 2 개의 채널이 겹쳐 있음을 나타냅니다.

디지털 채널을 버스로 표시하려면

디지털 채널을 그룹화하여 하나의 버스로 표시할 수 있습니다. 이 때 각각의 버 스 값은 디스플레이 하단에 16 진수나 2 진수로 표시됩니다. 버스는 2 개까지 만들 수 있습니다. 각 버스를 구성하고 표시하려면 전면 패널에 있는 [Digital](디지털) 키를 누르십시오. 그 다음 버스 소프트키를 누르십시오.

다음으로 버스를 선택하십시오. 엔트리 노브를 돌린 후 엔트리 노브를 누르거나 버스 1/ 버스 2 소프트키를 누르면 해당 버스가 켜집니다.

채널 소프트키와 엔트리 노브를 사용하여 버스에 포함시킬 개별 채널을 선택합 니다. 채널 선택은 엔트리 노브를 돌리고 누르거나 소프트키를 누르면 됩니다. 또한 D7-D0 선택/선택 해제 소프트키를 눌러 각 버스 내에 8개 채널의 그룹을 포함시키거나 제외시킬 수 있습니다.

버스 표시가 비어 있거나, 모두 흰색이거나, 표시 내용에 "..." 이 포함되어 있다 면, 수평 스케일을 확장하여 데이터가 표시될 공간을 만들거나 커서를 사용하여 값을 표시해야 합니다 ("커서를 사용하여 버스 값 읽기 " 109 페이지 참조).

베이스 소프트키를 누르면 버스 값을 16 진수 또는 2 진수로 표시하도록 선택할 수 있습니다.

버스는 디스플레이 하단에 표시됩니다.

버스 값은 16 진수 또는 2 진수로 표시할 수 있습니다.

커서를 사용하 여 버스 값 읽기

- · 커서를 사용하여 임의의 포인트에서 디지털 버스 값을 읽으려면:
 - 1 커서를 켭니다 (전면 패널에 있는 [Cursors](커서)키 누름)
 - 2 커서 모드 소프트키를 누르고 모드를 16 진수 또는 2 진수로 변경합니다.
 - 3 소스 소프트키를 누르고 버스 1 또는 버스 2 를 선택합니다.
 - 4 엔트리 노브와 X1 및 X2 소프트키를 사용하여 버스 값을 읽을 위치로 커서를 이동합니다.

[Digital](디지털) 키를 눌러 디지털 채널 메뉴가 표시되도록 만들면, 디지털 작동 표시기가 커서 값이 있던 곳에 표시되며 커서의 버스 값이 눈금 안에 표시 됩니다.

패턴 트리거를 버스 값은 패턴 트리거 기능을 사용할 때도 표시됩니다. 전면 패널에 있는 사용할 때 버스 [Pattern](패턴) 키를 누르면 패턴 트리거 메뉴가 표시되고 버스 값이 오른쪽 값 표시하기 소프트키 위에 표시됩니다.

> 버스 값을 16 진수 값으로 표시할 수 없는 경우에는 버스 값에 달러 기호(\$)가 표시됩니다. 이는 패턴 사양 내에 하나 이상의 "상관 없음 "(X) 이 로우(0) 및 하이(1) 로직 레벨과 결합되어 있거나, 전환 표시기 — 상승 에지(▲) 또는 하 강 에지(▲)— 가 패턴 사양에 포함된 경우에 발생합니다. 모두 상관 없음(X) 으로 구성된 바이트는 버스 내에서 상관 없음(X)으로 표시됩니다.

패턴 트리거링에 대한 자세한 내용은 "패턴 트리거 " 144 페이지를 참조하십시 오.

디지털 채널 신호 충실도 : 프로브 임피던스 및 접지

혼합 신호 오실로스코프를 사용할 때 프로빙과 관련된 문제를 겪을 수도 있습니 다. 이러한 문제는 프로브 부하 및 프로브 접지의 두 가지 범주로 분류됩니다. 프로브 부하 문제는 일반적으로 테스트 대상 장치에 영향을 주며, 프로브 접지 문제는 측정 장비의 데이터 정확성에 영향을 줍니다. 프로브 설계를 통해 첫 번 째 문제를 최소화할 수 있으며, 두 번째 문제는 좋은 프로빙 방법을 통해 해결할 수 있습니다. 입력 임피던스

로직 프로브는 높은 입력 임피던스와 높은 대역폭을 제공하는 패시브 프로브로 서,일반적으로 오실로스코프에 신호의 일부 감쇠 효과(대개 20 dB 정도)를 제공합니다.

패시브 프로브 입력 임피던스는 일반적으로 병렬 캐패시턴스와 저항으로 지정 됩니다. 저항은 팁 저항 값과 테스트 장비의 입력 저항을 합한 값입니다(아래 그림 참조). 캐패시턴스는 팁 보정 캐패시터와 케이블의 직렬 조합에 접지에 대 한 표유 팁 캐패시턴스와 병렬인 계측기 캐패시턴스를 합한 값입니다. 그 결과 는 DC 및 저주파에 대해 정확한 모델이 되는 입력 임피던스 사양이 되지만, 프 로브 입력의 고주파 모델이 더 유용합니다(아래 그림 참조). 고주파 모델에는 접지에 대한 순수한 팁 캐패시턴스뿐 아니라 직렬 팁 저항, 케이블의 특성 임피 던스 (Z_o)가 감안됩니다.

그림 21 DC 및 저주파 프로브 등가 회로

그림 22 고주파 프로브 등가 회로

두 모델의 임피던스 그래프가 이 그림에 나와 있습니다. 두 그래프를 비교하면 직렬 팁 저항과 케이블의 특성 임피던스 모두 입력 임피던스를 훨씬 넘어서는 것을 볼 수 있습니다. 표유 팁 캐패시턴스는 일반적으로 소량 (1 pF) 이며, 임피 던스 도표의 최종 임계점을 형성합니다.

그림 23 두 프로브 회로 모델의 임피던스 대 주파수

로직 프로브는 위에 나와 있는 고주파 회로 모델로 대표할 수 있으며, 가능한 많 은 직렬 팁 저항을 제공하도록 설계됩니다. 접지에 대한 표유 팁 캐패시턴스는 프로브 팁 어셈블리의 적절한 기계적 설계를 통해 최소화됩니다. 이는 고주파에 서 최대한의 입력 임피던스를 제공합니다.

프로브 접지

프로브 접지는 전류가 프로브에서 소스로 복귀하는 저임피던스 경로입니다.고 주파에서 이 경로의 길이가 길어지면, 프로브 입력에서 대량의 공통 모드 전압 이 생깁니다. 발생된 전압은 다음 공식에 따라 이 경로가 인덕터인 것처럼 동작 하게 됩니다. $V = L\frac{di}{dt}$

접지 인덕턴스 (L) 를 높이고 , 전류 (di) 를 늘리거나 또는 전이 시간 (dt) 을 줄이 면 전압 (V) 이 증가합니다 . 이 전압이 오실로스코프에 정의된 임계 전압을 초과 하면 데이터가 잘못 측정됩니다 .

다수의 프로브에서 하나의 프로브 접지를 공유하면 각 프로브로 흘러 들어가는 전류가 접지 복귀 경로로 사용되는 한 프로브의 공통 접지 인덕턴스를 통해 복 귀됩니다. 그 결과, 위 공식에서 전류 (di) 가 증가되며, 전이 시간 (dt)에 따라 공통 모드 전압이 잘못된 데이터 생성을 일으킬 수 있는 수준까지 높아질 수 있 습니다.

그림 24 공통 모드 입력 전압 모델

긴 접지 복귀 경로는 공통 모드 전압뿐 아니라 프로브 시스템의 펄스 충실도도 저하시킵니다. 상승 시간이 증가되며, 프로브의 입력에 존재하는 비감쇄 LC 회 로로 인한 링잉 또한 증가합니다. 디지털 채널 디스플레이는 파형을 재구성하므 로 링잉 및 섭동 (perturbation) 이 표시되지 않습니다. 따라서 파형 디스플레이 를 조사하는 것으로는 접지 문제를 발견할 수 없습니다. 실제로, 무작위 글리치 또는 일관적이지 않은 데이터 측정을 통해 문제를 발견하게 될 가능성이 높습니 다. 링잉 및 섭동을 확인하려면 아날로그 채널을 사용하십시오.

프로빙 모범 사례

변수 L, di, dt 로 인해 측정 설정에 얼마나 많은 여유를 둘 수 있는지 확신하기 어려울 수도 있습니다. 다음은 프로빙 모범 사례에 대한 지침입니다.

- 각 디지털 채널 그룹 (D15-D8 및 D7-D0) 내의 채널이 데이터 캡처에 사용되는 경우, 해당 채널 그룹에서 나오는 접지 리드를 테스트 대상 장치의 접지에 연결해야 합니다.
- 노이즈가 많은 환경에서 데이터를 캡처할 때는 채널 그룹의 접지와 더불어 매 세 번째 디지털 채널 프로브의 접지도 사용해야 합니다.
- 고속 타이밍 측정 (상승 시간 < 3 ns)에는 각 디지털 채널 프로브의 자체 접 지를 사용해야 합니다.

고속 디지털 시스템을 설계할 때는 계측기의 프로브 시스템과 직접 인터페이스 가 연결되는 전용 테스트 포트를 설계하는 것을 고려해야 합니다. 그러면 측정 설정이 간편해지고 반복 가능한 방식으로 테스트 데이터를 수집할 수 있습니다. 01650-61607 16 채널 로직 프로브 케이블과 01650-63203 종단 어댑터는 업 계 표준 20 핀 보드 커넥터에 손쉽게 연결할 수 있도록 설계되었습니다. 위 케이 블은 2 m 길이의 로직 분석기 프로브 케이블이며, 종단 어댑터는 적절한 RC 네 트워크를 제공하는 매우 편리한 패키지입니다. 이러한 부품과 함께 1251-8106 20 핀, 로우 프로파일, 직선형 보드 커넥터를 Keysight 에서 주문 할 수 있습니다. 6 디지털 채널

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

7 시리얼 디코드

시리얼 디코드 옵션 / 117 리스터 / 118 리스터 데이터 검색 / 120

디지털 채널 및 직렬 디코딩을 동시에 켤 수 없습니다. [Serial] 직렬 키는 [Digital] 디지털 키보다 우선합니다. 디지털 채널이 켜진 경우 직렬 트리거를 사용할 수 있습니다.

시리얼 데이터 느린 시리얼 신호 (예: I2C, SPI, CAN, LIN 등)에 대해 트리거링할 때와 같은

에 대한 트리거 경우, 오실로스코프의 자동 트리거링을 방지하고 디스플레이를 안정화하려면 링 자동 트리거 모드에서 일반 트리거 모드로 전환하는 것이 필요할 수 있습니다. 트리거 모드는 [Mode/Coupling](모드 / 커플링) 키를 누른 다음, 모드 소프트 키를 눌러 선택할 수 있습니다.

> 또한 임계 전압 레벨도 각 소스 채널에 적합하게 설정해야 합니다. 각 시리얼 신 호의 임계값 레벨은 신호 메뉴에서 설정할 수 있습니다. [Serial](시리얼) 키를 누른 다음, 신호 소프트키를 누르십시오.

시리얼 디코드 옵션

Keysight's 하드웨어 가속 방식 시리얼 디코드 옵션은 오실로스코프 제조 시에 설치되거나 나중에 추가할 수 있습니다. 다음과 같은 시리얼 디코드 라이센스를 사용할 수 있습니다.

라이센스 직렬 디코드	참조 :
CAN(Controller Area Network) 및 LIN(Local Interconnect Network) 직렬 버스 .	• "CAN 시리얼 디코드 " 321 페이지 . • "LIN 시리얼 디코드 " 329 페이지 .

라이센스 직렬 디코드	참조:
I2C(Inter-IC) 및 SPI(Serial Peripheral Interface) 직렬 버스 .	• "I2C 시리얼 디코드 " 338 페이지 . • "SPI 시리얼 디코드 " 347 페이지 .
RS232(권장 표준 232) 를 포함한 UART(Universal Asynchronous Receiver/Transmitter) 프로토콜	• "UART/RS232 시리얼 디코드 " 357 페 이지 .

이러한 라이센스가 사용 중인 오실로스코프에 설치되어 있는지 확인하려면 "오 실로스코프 정보를 표시하려면 "279 페이지을 참조하십시오.

시리얼 디코드 라이센스를 주문하려면 www.keysight.com 으로 이동하여 제품 번호 ("사용 가능한 라이센스 옵션 " 302 페이지 참조) 를 검색하거나 지역 Keysight 영업소 (www.keysight.com/find/contactus 참조) 에 문의하십시오.

리스터

리스터는 강력한 프로토콜 장애 검사 툴입니다. 리스터를 사용하여 시간 태그 및 디코딩된 특정 값을 포함한 대량의 패킷 수준 시리얼 데이터를 표 형식으로 볼 수 있습니다. [Single](싱글) 키를 누른 후에 스크롤 리스터 소프트키를 누 른 다음 엔트리 노브를 돌려 이벤트를 선택하고 확대 / 축소 선택사항 소프트키 를 눌러 이벤트로 이동할 수 있습니다.

리스터를 사용하려면:

- 1 분석할 시리얼 데이터 신호에 대한 트리거 및 디코드를 설정합니다.
- 2 [시리얼] > 리스터를 누릅니다.
- 3 디스플레이를 누른 다음, 엔트리 노브를 돌려 시리얼 버스 신호가 디코딩되는 시리얼 슬롯(시리얼 1)을 선택합니다.

행을 선택하거나 리스터 데이터를 탐색하기 전에 오실로스코프 수집을 정지 해야 합니다.

4 [Single](싱글)키(전면 패널의 실행 제어 그룹에 포함)를 눌러 수집을 중 단합니다.

[Stop](정지)대신 [Single](싱글)을 누르면 최대 메모리 용량이 채워집니다.

화면을 축소하여 대량의 패킷을 보는 경우 리스터에 모든 패킷의 정보가 표시 되지 않을 수도 있습니다. 하지만 [Single](싱글) 키를 누르면 화면에 있는 모든 시리얼 디코드 정보가 리스터에 표시됩니다.

5 **스크롤 리스터** 소프트키를 누르고 엔트리 노브를 사용하여 데이터를 스크롤 할 수 있습니다.

시간 열의 시간 태그는 트리거 포인트에 해당하는 이벤트 시간을 나타냅니다 . 파형 표시 영역에 표시되는 이벤트의 시간 태그는 어두운 배경으로 표시됩 니다.

- 6 확대 / 축소 선택사항 소프트키를 누르면 (또는 엔트리 노브 누름) 선택한 리 스터 행과 연결된 시간에 파형 디스플레이가 중앙 정렬되며, 수평 스케일 설 정이 자동으로 설정됩니다.
- 7 실행 취소 확대 / 축소 소프트키를 누르면 수평 스케일 및 지연 설정이 마지막 확대 / 축소 선택사항 이전으로 복귀됩니다.

7 시리얼 디코드

- 8 옵션 소프트키를 누르면 리스터 옵션 메뉴가 열립니다. 이 메뉴에서 다음과 같은 작업이 가능합니다.
 - 시간 추적 옵션을 활성화 또는 비활성화합니다.시간 추적을 활성화하면 서로 다른 리스터 행을 선택할 때마다 (수집이 중단된 상태에서 엔트리 노 브 사용) 수평 지연이 선택한 행의 시간으로 변경됩니다.또한 수평 지연 을 변경하면 리스터가 스크롤됩니다.
 - 스크롤 리스터 소프트키를 누르고 엔트리 노브를 사용하여 리스터 디스플 레이 내에서 데이터 행을 스크롤할 수 있습니다.
 - 시간 기준 소프트키를 누르고 엔트리 노브를 사용하여 트리거에 대응하는 시간 또는 이전 패킷 행에 대응하는 시간을 리스터의 시간 열에 표시할 것 인지 선택할 수 있습니다.

리스터 데이터 검색

시리얼 디코드가 활성화된 상태에서 [Search](검색) 키를 사용하여 리스터에 서 행을 찾아 표시할 수 있습니다.

검색 소프트키를 사용하여 찾을 이벤트를 지정할 수 있습니다. 이는 프로토콜 트리거를 지정하는 작업과 비슷합니다.

발견된 이벤트는 리스터 열 맨 왼쪽에 오렌지색으로 표시됩니다. 발견된 이벤트 의 총 수가 소프트키 위에 표시됩니다.

시간 Rx Tx 오류	
	🙏 KEYSIGHT 🛛
2.822ms L 🔺 🔨	TECHNOLOGIES
-2.246ms e	수집 ::
	일반
► -522 1us	2.00MSa/s
51,89us S	
627.9us 0	채널 ::
1.202ms s .	10.0-1
1.778ms R 💽	10.0-1
20	1.00.1
	1.00:1
2₽ TX 	
(RX - (A) (g) (i) (l) (e) (n) (t) - (RX R) (R) (r	
S1 TX (M) (S) (0) (s) (#) (
고 · · · · · · · · · · · · · · · · · · ·	
김생 신구를 걸산대상 데이터 데이터	
S. (IIABT/BS232) 리스터 Tx 데이타 = M	

각 시리얼 디코드 옵션마다 프로토콜별 헤더 , 데이터 , 오류 등을 찾을 수 있습 니다 . 아래를 참조하십시오 .

- "리스터에서 CAN 데이터 검색 " 325 페이지
- "리스터에서 I2C 데이터 검색 " 341 페이지
- "리스터에서 LIN 데이터 검색 " 332 페이지
- "리스터에서 SPI 데이터 검색 " 350 페이지
- "리스터에서 UART/RS232 데이터 검색 " 360 페이지

7 시리얼 디코드

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

8 디스플레이 설정

파형 명암을 조정하려면 / 123 지속성을 설정 또는 지우려면 / 125 디스플레이를 지우려면 / 126 격자 유형을 선택하려면 / 126 격자 명암을 조정하려면 / 127 디스플레이를 고정하려면 / 127

파형 명암을 조정하려면

표시되는 파형의 명암을 조정하여 빠른 time/div 설정 및 낮은 트리거 속도 등과 같은 다양한 신호 특성을 확인할 수 있습니다.

명암을 높이면 최대량의 노이즈와 간헐적으로 발생하는 이벤트를 볼 수 있습니 다.

명암을 낮추면 아래 그림에 나온 것처럼 복잡한 신호에서 더 많은 세부 정보를 노출시킬 수 있습니다.

1 [Intensity](명암 조절) 키를 눌러 불이 켜지도록 합니다.

이 키는 엔트리 노브 바로 아래에 있습니다.

2 엔트리 노브를 돌려 파형 명암을 조정합니다.

파형 명암 조정은 아날로그 채널 파형에만 영향을 줍니다 (산술 파형, 기준 파 형, 디지털 파형 등은 아님).

그림 25 100% 명암으로 표시된 진폭 변조

그림 26 40% 명암으로 표시된 진폭 변조

지속성을 설정 또는 지우려면

지속성을 설정하면 오실로스코프에서 새로운 수집 결과로 디스플레이를 업데이 트하되, 이전 수집 결과가 즉시 지워지지는 않습니다. 모든 이전 수집 결과가 감소된 명암으로 표시됩니다. 새로운 수집 결과는 정상 색상과 정상 명암으로 표시됩니다.

파형 지속성은 현재 디스플레이 영역에만 유지되며, 지속성 디스플레이를 이동 하거나 확대 / 축소할 수 없습니다.

지속성을 사용하려면 :

1 [Display](표시) 키를 누릅니다.

- 2 지속성을 누른 다음 엔트리 노브를 돌려 다음 중 하나를 선택합니다.
 - 꺼짐 지속성을 끕니다.

지속성이 꺼진 경우, **캡처 파형** 소프트키를 눌러 싱글샷 무한 지속성을 실 행할 수 있습니다. 데이터의 1 회 수집 결과가 감소된 명암으로 표시되며, 사용자가 지속성을 지우거나 디스플레이를 지울 때까지 화면에 남습니다.

• 지속성 - (무한 지속성) 이전 수집의 결과가 절대 지워지지 않습니다.

무한 지속성을 사용하여 노이즈 및 지터를 측정하거나, 다양한 파형에서 최악의 경우를 확인하고, 타이밍 위반을 발견하거나, 간헐적으로 발생하 는 이벤트를 찾을 수 있습니다.

• 가변 지속성 - 일정 시간이 지나면 이전 수집의 결과가 지워집니다.

가변 지속성을 사용하면 아날로그 오실로스코프와 유사한 수집 데이터 화 면을 볼 수 있습니다.

가변 지속성을 선택한 경우, **시간** 소프트키를 누르고 엔트리 노브를 사용 하여 이전 수집 결과가 표시될 시간을 지정할 수 있습니다.

디스플레이에 다수의 수집 결과가 누적되기 시작합니다.

3 디스플레이에서 이전 수집 결과를 지우려면 지속성 지우기 소프트키를 누르 십시오..

오실로스코프에 수집 결과가 다시 누적되기 시작합니다.

4 오실로스코프를 일반 디스플레이 모드로 되돌리려면 지속성을 끈 다음, 지속 성 지우기 소프트키를 누르십시오.

지속성을 꺼도 디스플레이가 지워지지는 않습니다. 디스플레이는 표시 지움 소프트키를 누르거나 [AutoScale](자동설정) 키를 눌러야만 지워집니다(지속성도 꺼짐).

다양한 파형에서 최악의 경우를 확인하는 다른 방법은 " <mark>글리치 또는 좁은 펄스</mark> 캡처 " 180 페이지를 참조하십시오 .

디스플레이를 지우려면

1 [Display](표시)>표시 지움을 누릅니다.

또한 디스플레이를 지우도록 [Quick Action](빠른 실행) 키를 구성할 수도 있 습니다. "[빠른 실행] 키 구성 " 280 페이지를 참조하십시오.

격자 유형을 선택하려면

비디오 트리거 유형을 선택하고 ("비디오 트리거 "153 페이지 참조) 하나 이상 의 표시된 채널의 수직 스케일링이 140mV/div 인 경우 **격자** 소프트키를 통해 다음 격자 유형에서 선택할 수 있습니다.

- 전체 일반 오실로스코프 격자입니다.
- mV 왼쪽에 라벨이 있는 -0.3 V ~ 0.8 V 의 수직 격자를 표시합니다.
- IRE (Institute of Radio Engineers) 격자는 왼쪽에 라벨이 있고 -40 부터 100IRE 까지 IRE 단위로 수직 격자를 표시합니다. mV 격자에서 0.35V 및 0.7V 레벨도 표시되고 오른쪽에 라벨이 있습니다. IRE 격자를 선택하면 커서 값이 IRE 단위에도 표시됩니다. (원격 인터페이스를 통한 커서 값은 IRE 단 위에 없습니다.)

mV 및 IRE 격자 값은 수직 스케일링이 140mV/div 이고 수직 오프셋이 245mV 일 때 정확하고 Y 커서 값과 일치합니다.

격자 유형을 선택하려면:

- 1 [Display](표시)를 누릅니다.
- 2 격자 소프트키를 누른 다음 엔트리 노브 ��를 돌려 격자 유형을 선택합니다

격자 명암을 조정하려면

디스플레이 격자 (눈금) 명암을 조정하려면:

- 1 [Display](표시)를 누릅니다.
- 2 명암조절 소프트키를 누른 다음 엔트리 노브 ♥를 돌려 표시되는 그리드의 명암을 변경합니다.

명암 레벨은 **명암조절** 소프트키에 표시되며 0 ~ 100% 로 조정할 수 있습니다. 그리드 내 각각의 주요 수직 눈금은 디스플레이 상단의 상태 표시줄에 표시되는 수직 감도에 대응합니다.

그리드 내 각각의 주요 수평 눈금은 디스플레이 상단의 상태 표시줄에 표시되는 time/div 에 대응합니다.

디스플레이를 고정하려면

수집 실행을 중지하지 않고 디스플레이를 고정하려면 [Quick Action](빠른 실 행) 키를 구성해야 합니다. "[빠른 실행] 키 구성 " 280 페이지를 참조하십시 오.

- 1 [Quick Action](빠른 실행) 키를 구성한 후에 누르면 디스플레이가 고정됩니다.
- 2 디스플레이의 고정을 해제하려면 다시 [Quick Action](빠른 실행)을 누르 십시오.

고정된 디스플레이에 수동 커서를 사용할 수 있습니다.

트리거 레벨 조정, 수직 또는 수평 설정 조정, 데이터 저장 등과 같은 다수의 작 업은 디스플레이 고정을 해제시킵니다.

8 디스플레이 설정

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

9 라벨

라벨 표시를 켜거나 끄려면 / 129 사전 정의된 라벨을 채널에 할당하려면 / 130 새 라벨을 정의하려면 / 131 사용자가 작성한 텍스트 파일에서 라벨 목록을 로드하려면 / 132 라벨 라이브러리를 출고 시 설정으로 재설정하려면 / 133

라벨을 정의하고 각 아날로그 입력 채널에 할당할 수 있으며, 또는 라벨을 꺼서 파형 표시 영역을 늘릴 수 있습니다. MSO 모델에서는 라벨을 디지털 채널에도 적용할 수 있습니다.

라벨 표시를 켜거나 끄려면

1 전면 패널에 있는 [Label](라벨) 키를 누릅니다.

그러면 표시되는 아날로그 및 디지털 채널에 라벨이 켜집니다. 라벨은 표시 되는 트레이스의 왼쪽 에지에 표시됩니다.

아래 그림에 표시되는 라벨의 예가 나와 있습니다.

2 라벨을 끄려면 [Label](라벨) 키를 다시 누르십시오.

사전 정의된 라벨을 채널에 할당하려면

- 1 [Label](라벨) 키를 누릅니다.
- 2 채널 소프트키를 누른 다음, 엔트리 노브를 돌리거나 채널 소프트키를 연속 해서 눌러 라벨을 할당할 채널을 선택합니다.

위 그림에 채널 목록과 기본 라벨이 나와 있습니다. 라벨을 할당할 때 채널을 켤 필요는 없습니다.

- 3 라이브러리 소프트키를 누른 다음, 엔트리 노브를 돌리거나 라이브러리 소프 트키를 연속해서 눌러 라이브러리에서 사전 정의된 라벨을 선택합니다.
- 4 적용 새로운 라벨 소프트키를 눌러 선택한 채널에 라벨을 할당합니다.
- 5 채널에 할당하려는 각 사전 정의된 라벨에 대해 위 절차를 반복합니다.

새 라벨을 정의하려면

- 1 [Label](라벨) 키를 누릅니다.
- 2 채널 소프트키를 누른 다음, 엔트리 노브를 돌리거나 소프트키를 연속해서 눌러 라벨을 할당할 채널을 선택합니다.

라벨을 할당할 때 채널을 켤 필요는 없습니다. 채널이 켜져 있는 경우 현재 라벨이 강조 표시됩니다.

3 철자 소프트키를 누른 다음, 엔트리 노브를 돌려 새 라벨의 첫 문자를 선택합니다.

엔트리 노브를 돌리면 소프트키 위의 "새로운 라벨 =" 라인과 **철자** 소프트키 에 강조 표시되는 위치에 입력할 문자를 선택할 수 있습니다. 라벨의 길이는 최대 10 자까지 사용할 수 있습니다.

- 4 입력 소프트키를 누르면 선택한 문자가 입력되며 다음 문자 위치로 이동합니다.
- 5 입력 키를 연속해서 누르면 라벨 이름에 있는 문자를 강조 표시할 수 있습니 다.
- 6 라벨에서 문자를 삭제하려면 삭제하려는 문자가 강조 표시될 때까지 입력 소 프트키를 누른 다음, 삭제 글자 소프트키를 누르십시오.
- 참고 철자(및 기타) 문자 편집 소프트키를 사용하는 대신 연결된 USB 키보드를 사용할 수 있습니다 ..
 - 7 라벨에 사용할 문자를 입력한 후, 적용 새로운 라벨 소프트키를 누르면 선택 한 채널에 라벨이 할당됩니다.
 - 새 라벨을 정의하면 해당 라벨이 비휘발성 라벨 목록에 추가됩니다.
- 라벨 할당 자동 증가 월 소프트키를 누른 후에 오실로스코프에서 자동으로 숫자를 증가시키고 변경 된 라벨을 "새로운 라벨" 필드에 표시합니다. 따라서 새 채널을 선택하고 다시 적용 새로운 라벨 소프트키를 누르기만 하면 채널에 라벨을 할당할 수 있습니다 . 원본 라벨만 라벨 목록에 저장됩니다. 이 기능을 사용하면 숫자 제어 라인과 데이터 버스 라인에 연속적인 라벨을 손쉽게 할당할 수 있습니다.

사용자가 작성한 텍스트 파일에서 라벨 목록을 로드하려면

텍스트 편집기를 사용하여 라벨 목록을 만든 다음 해당 라벨 목록을 오실로스코 프에 로드하는 것이 편리할 수 있습니다. 이 방법을 사용하면 오실로스코프의 컨트롤을 사용하여 라벨 목록을 편집하는 대신 키보드로 입력할 수 있습니다.

최대 75 개의 라벨로 목록을 만들어 오실로스코프에 로드할 수 있습니다. 라벨 은 목록 시작 부분에 추가됩니다. 75 개 이상의 라벨을 로드하는 경우 처음 75 개만 저장됩니다.

라벨을 텍스트 파일에서 오실로스코프로 로드하려면 :

1 텍스트 편집기를 사용하여 각각의 라벨을 만듭니다. 각 라벨의 길이는 최대 10 자까지 사용할 수 있습니다. 각 라벨은 라인피드를 사용하여 분리합니다.

- 2 파일 이름을 labellist.txt 로 지정하고 썸 드라이브와 같은 USB 대용량 저장 장치에 저장합니다.
- 3 파일 탐색기 ([유틸리티] > 파일 탐색기 누름)를 사용하여 목록을 오실로스 코프에 로드합니다.

라벨 목록 관리

참 고

라이브러리 소프트키를 누르면 가장 최근 사용한 라벨 75 개의 목록이 표시됩니 다. 이 목록에는 중복되는 라벨이 저장되지 않습니다. 라벨에 후속되는 숫자의 수에는 제한이 없습니다. 기본 문자열이 라이브러리에 있는 기존 라벨과 동일한 경우 새 라벨은 라이브러리에 추가되지 않습니다. 예를 들어 라벨 A0 이 라이브 러리에 있고 A12345 라는 새 라벨을 만든 경우 새 라벨은 라이브러리에 추가되 지 않습니다.

새로운 사용자 정의 라벨을 저장하는 경우 목록에서 가장 오래된 라벨이 새 라 벨로 대체됩니다. 가장 오래됐다는 것은 채널에 최종적으로 할당된 후 시간이 가장 오래 지난 라벨을 의미합니다. 채널에 라벨을 지정할 때마다 해당 라벨은 목록의 최신 라벨 위치로 이동합니다. 따라서 라벨 목록을 한동안 사용하면 주 도적인 라벨이 생겨 계측기 디스플레이를 사용자 요구에 적합하게 맞춤 구성하 기가 쉬워집니다.

라벨 라이브러리 목록을 재설정하면 (다음 항목 참조), 사용자 정의 라벨이 모 두 삭제되며 라벨 목록은 출고 시 구성으로 복원됩니다 .

라벨 라이브러리를 출고 시 설정으로 재설정하려면

기본 라이브러리 소프트키를 누르면 라이브러리에서 사용자 정의 라벨이 모두 삭제되며 라벨이 출고 시 기본 설정으로 복원됩니다. 이러한 사용자 정의 라벨 은 일단 삭제되면 복구할 수 없습니다.

- 1 [유틸리티] > 옵션 > 기본 설정를 누릅니다.
- 2 기본 라이브러리 소프트키를 누릅니다.

그러면 라이브러리에서 모든 사용자 정의 라벨이 삭제되고 라벨이 출고 시 기 본값으로 재설정됩니다. 단, 현재 채널에 할당된 라벨(파형 영역에 표시되 는 라벨)은 기본값으로 변경되지 않습니다.

참고 기본 라이브러리 삭제 없이 라벨 초기화 [Default Setup](기본 설정)을 누르면 모든 채널 라벨이 기본 라벨로 재설정되지만, 라이브러리에 있는 사용자 정의 라벨의 목록은 삭제되지 않습니다.

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

10 트리거

트리거 레벨 조정 / 136 트리거 강제 적용 / 137 에지 트리거 / 138 에지 후 에지 트리거 / 140 펄스 폭 트리거 / 141 패턴 트리거 / 144 OR 트리거 / 146 상승 / 하강 시간 트리거 / 148 N 차 에지 버스트 트리거 / 149 런트 트리거 / 150 설정 및 유지 트리거 / 152 비디오 트리거 / 153 USB 트리거 / 162 시리얼 트리거 / 164

트리거 설정은 오실로스코프에 데이터를 수집 및 표시할 시점을 알리는 역할을 합니다. 예를 들어, 아날로그 채널 1 입력 신호의 상승 에지에 대한 트리거를 설 정할 수 있습니다.

트리거 레벨 노브를 돌려 아날로그 채널 에지 검출에 사용되는 수직 레벨을 조 정할 수 있습니다.

에지 트리거 유형 이외에도, 상승 / 하강 시간, N 차 에지 버스트, 패턴, 펄스 폭, 런트 펄스, setup & hold(설정 및 유지) 위반, TV 신호, USB 신호, 시리 얼 신호에 대한 트리거를 설정할 수 있습니다(옵션 라이센스가 설치된 경우).

모든 입력 채널 또는 "외부 트리거 입력 "170 페이지 BNC 를 대부분의 트리거 유형에 대한 소스로 사용할 수 있습니다.

트리거 설정에 대한 변경 내용은 즉시 적용됩니다.트리거 설정을 변경할 때 오 실로스코프가 정지되는 경우 [Run/Stop](실행/정지) 또는 [Single](싱글)을 누르면 오실로스코프에 새로운 사양이 사용됩니다.트리거 설정을 변경할 때 오 실로스코프가 작동 중이라면 새로운 트리거 정의는 다음 수집이 시작될 때 사용 됩니다.

[Force Trigger](강제 트리거) 키를 사용하여 트리거가 발생되지 않을 때에도 데이터를 수집 및 표시할 수 있습니다.

[Mode/Coupling](모드 / 커플링) 키를 사용하여 모든 트리거 유형에 영향을 주 는 옵션을 설정할 수 있습니다 (11 장, "트리거 모드 / 커플링," 페이지 시작 165 쪽 참조).

트리거 설정은 오실로스코프 설정과 함께 저장할 수 있습니다 (18장, "저장/ 호출 (설정, 화면, 데이터)," 페이지 시작 247 쪽 참조).

트리거 - 일반 트리거된 파형이란 특정 트리거 조건이 충족될 때마다 오실로스코프가 디스플 정보 레이 왼쪽에서 오른쪽으로 파형의 추적(표시)을 시작하는 파형을 의미합니다 . 이를 통해 사인파 및 사각파와 같은 주기적인 신호뿐 아니라 시리얼 데이터 스 트림과 같은 비주기적인 신호까지 안정적으로 표시할 수 있습니다.

> 아래 그림에 수집 메모리의 개념 설명이 나와 있습니다. 트리거 이벤트는 수집 메모리를 트리거 전 버퍼와 트리거 후 버퍼로 나눈 것으로 간주할 수 있습니다. 수집 메모리 내에서 트리거 이벤트의 위치는 시간 기준 포인트와 지연 (수평 위 치) 설정에 따라 결정됩니다 (" 수평 지연 (위치) 을 조정하려면 " 47 페이지 참 조).

트리거 레벨 조정

트리거 레벨 노브를 돌려 선택한 아날로그 채널에 대한 트리거 레벨을 조정할 수 있습니다.

트리거 10

트리거 레벨 노브를 누르면 레벨이 파형의 50% 값으로 설정됩니다. AC 커플링 을 사용하는 경우 트리거 레벨 노브를 누르면 트리거 레벨이 약 0 V 로 설정됩니 다.

아날로그 채널의 트리거 레벨 위치는 디스플레이 왼쪽 끝의 트리거 레벨 아이콘 **ⓑ**(아날로그 채널이 켜진 경우)으로 표시됩니다. 아날로그 채널 트리거 레벨 값은 디스플레이 오른쪽 상단 모서리에 표시됩니다.

선택한 디지털 채널의 트리거 레벨은 디지털 채널 메뉴에서 임계값 메뉴를 사용 하여 설정합니다. 전면 패널에서 [Digital](디지털) 키를 누른 다음, 임계값 소 프트키를 눌러 선택한 디지털 채널 그룹의 임계값 레벨 (TTL, CMOS, ECL 또 는 사용자 정의)을 설정합니다. 임계값은 디스플레이 오른쪽 상단 모서리에 표 시됩니다.

라인 트리거 레벨은 조정할 수 없습니다. 이 트리거는 오실로스코프에 공급되는 전원 라인과 동기화되어 있습니다.

참 고 또한 **[분석] > 기능**을 누른 다음 **트리거 레벨**을 선택하면 모든 채널의 트리거 레벨을 변경할 수 있습니다 .

트리거 강제 적용

[Force Trigger](강제 트리거) 키를 누르면 트리거가 발생하며 (아무 것에나) 수집 결과가 표시됩니다.

이 키는 트리거 조건이 충족되는 경우에만 수집이 이루어지는 일반 트리거 모드 에서 유용합니다.이 모드에서 트리거가 발생하지 않으면(즉, "Trig'd?" 표시 기가 표시되는 경우), [Force Trigger](강제 트리거)를 눌러 강제로 트리거를 발생시키고 입력 신호를 살펴볼 수 있습니다.

자동 트리거 모드에서는 트리거 조건이 충족되지 않으면 트리거가 강제로 발생 되며 "Auto?" 표시기가 표시됩니다. 10 트리거

에지 트리거

에지 트리거 유형은 파형에서 지정된 에지 (기울기) 및 전압 레벨을 확인하여 트리거를 식별합니다. 이 메뉴에서 트리거 소스 및 기울기를 정의할 수 있습니 다. 트리거 유형, 소스 및 레벨(해당하는 경우)은 디스플레이 오른쪽 상단 모 서리에 표시됩니다.

- 1 전면 패널의 트리거 부분에서 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 사용하여 에지 를 선택합니다.
- 3 트리거 소스를 선택합니다.
 - 아날로그 채널, 채널 수에 1 선택
 - 디지털 채널 (혼합 신호 오실로스코프에서), 디지털 채널 수 1 에 D0 선 택
 - 외부 후면 패널 EXT TRIG IN 신호에서 트리거됩니다.
 - 라인 AC 전원 신호의 상승 또는 하강 에지의 50% 레벨에서 트리거됩니다.
 - WaveGen 파형 발생기 출력 신호의 상승 에지의 50% 레벨에서 트리거 됩니다. (DC 또는 노이즈 파형 선택 시 사용 불가)

꺼진 상태 (표시되지 않음)의 채널을 에지 트리거의 소스로 선택할 수 있습니다.

선택한 트리거 소스는 디스플레이 오른쪽 상단 모서리에 있는 기울기 기호 옆 에 표시됩니다.

- **1** ~ **4** = 아날로그 채널
- D0 ~ Dn = 디지털 채널
- E = 외부 트리거 입력
- L = 라인 트리거
- ₩ = 파형 발생기
- 4 기울기 소프트키를 누르고 상승 에지, 하강 에지, 교대 에지 또는 어느 한쪽 에지를 선택합니다 (선택한 소스에 따라). 선택한 기울기가 디스플레이 오른 쪽 상단 모서리에 표시됩니다.

참 그

교대 에지 모드는 클럭의 두 에지 모두에서 트리거하려는 경우에 유용합니다 (예 : DDR 신호).

어느 한쪽 에지 모드는 선택한 소스의 모든 동작에 트리거하려는 경우에 유용합 니다 .

제한이 있는 어느 한쪽 에지 모드를 제외하고, 모든 모드는 오실로스코프의 최 대 대역폭까지 작동합니다. 어느 한쪽 에지 모드는 최대 100 MHz 의 연속 파형 신호에 트리거하지만, 최저 1/(2* 오실로스코프 대역폭)의 고립 펄스에 트리거 할 수 있습니다.

자동설정을 사 파형에 에지 트리거를 설정하는 가장 쉬운 방법은 자동설정을 사용하는 것입니 용한 에지 트리 다. 간단히 [AutoScale](자동설정) 키를 누르기만 하면 오실로스코프에서 간 거 설정 단한 에지 트리거 유형을 사용하여 파형에 트리거를 시도합니다. "자동설정 사 용 " 28 페이지을 참조하십시오.

MegaZoom 기술을 통한 간편한 트리거링

내장 MegaZoom 기술을 사용하여 간단히 파형에 자동설정을 적용한 다음, 오 실로스코프를 정지시켜 파형을 캡처할 수 있습니다. 그런 다음 수평 및 수직 노 브로 데이터를 이동 및 축소 / 확대하여 안정적인 트리거 포인트를 찾을 수 있습 니다. 자동설정은 트리거가 포함된 디스플레이로 이어질 때가 많습니다.

에지 후 에지 트리거

에지 후 에지 트리거 모드는 장전 에진 및 지연 기간 후 N 번째 에지가 발생하는 경우 트리거됩니다.

장전 및 트리거 에지는 아날로그 또는 디지털 채널에서 ▲ (상승) 또는 ▶(하강)에지로 지정할 수 있습니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 에지 후 에지를 선택합니다.

3 소스 소프트키를 누릅니다.

4 에지 후 에지 소스 메뉴에서:

- a 장전 A 소프트키를 누른 다음 엔트리 노브를 돌려 장전 에지가 발생할 채 널을 선택합니다.
- b 기울기 A 소프트키를 눌러 오실로스코프를 장전할 장전 A 신호의 에지를 지정합니다.
- c 트리거 B 소프트키를 누른 다음 엔트리 노브를 돌려 트리거 에지가 발생할 채널을 선택합니다.
- d 기울기 B 소프트키를 눌러 오실로스코프를 트리거할 트리거 B 신호의 에 지를 지정합니다.

선택한 아날로그 채널에 대한 트리거 레벨을 트리거 레벨 노브를 돌려 조정합 니다. [Digital](디지털) 키를 누르고 **임계값**을 선택하여 디지털 채널에 대한 임계값 레벨을 설정합니다. 트리거 레벨 값 또는 디지털 임계값은 디스플레 이 오른쪽 상단 구석에 표시됩니다.

- 5 🚳 뒤로 / 위로 키를 눌러 트리거 메뉴로 돌아갑니다.
- 6 지연 소프트키를 누른 다음 엔트리 노브를 돌려 장전 A 에지와 트리거 B 에 지 사이 지연 시간을 입력합니다.
- **7** N 번째 에지 B) 소프트키를 누른 다음 엔트리 노브를 돌려 트리거할 트리거 B 의 N 번째 에지를 선택합니다.

펄스 폭 트리거

펄스 폭 (글리치) 트리거링은 지정한 폭의 양 또는 음의 펄스에 트리거하도록 오실로스코프를 설정합니다. 특정 타임아웃 값에 트리거하려면 트리거 메뉴에 서 **패턴** 트리거를 사용하십시오 (" **패턴 트리거** " 144 페이지 참조).

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 펼스 폭을 선택합니다.

3 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 트리거할 채널 소스를 선택 합니다.

선택한 채널은 디스플레이 오른쪽 상단 모서리에 있는 극성 기호 옆에 표시됩 니다.

소스로는 오실로스코프에서 사용 가능한 모든 아날로그 또는 디지털 채널을 사용할 수 있습니다.

- 4 트리거 레벨을 조정합니다.
 - 아날로그 채널의 경우 트리거 레벨 노브를 돌립니다.
 - 디지털 채널의 경우 [Digital](디지털) 키를 누르고 임계값을 선택하여 임 계값 레벨을 설정합니다.

트리거 레벨 값 또는 디지털 임계값은 디스플레이 오른쪽 상단 모서리에 표시 됩니다.

5 펄스 극성 소프트키를 누르고 캡처하려는 펄스 폭에 양(∬) 또는 음(∐)의 극성을 선택합니다.

선택한 펄스 극성은 디스플레이 오른쪽 상단 모서리에 표시됩니다. 양의 펄 스는 현재 트리거 레벨 또는 임계값보다 높으며 음의 펄스는 현재 트리거 레 벨 또는 임계값보다 낮습니다. 양의 펄스에 트리거하는 경우, 한정 조건이 참일 때 펄스가 높음에서 낮음으 로 전환될 때 트리거가 발생합니다. 음의 펄스에서의 트리거하는 경우, 한정 조건이 참일 때 펄스가 낮음에서 높음으로 전환될 때 트리거가 발생합니다.

6 한정자 소프트키 (< > ➤)를 누르고 시간 한정자를 선택합니다.

한정자 소프트키는 다음과 같은 펄스 폭에 트리거하도록 오실로스코프를 설 정합니다.

• 시간 값 미만 (**<**).

예를 들어, 양의 펄스에 대해 t<10 ns 로 설정한 경우,

• 시간 값 초과 (>).

예를 들어, 양의 펄스에 대해 t>10 ns 로 설정한 경우,

시간 값 범위 이내 (><).
 예를 들어, 양의 펄스에 대해 t>10 ns 및 t<15 ns 로 설정한 경우.

7 한정자 시간 설정 소프트키 (< 또는 >)를 선택한 다음, 엔트리 노브를 돌려 필스 폭 한정자 시간을 설정합니다.

한정자는 다음과 같이 설정할 수 있습니다.

- 2 ns ~ 10 초 : > 또는 < 한정자의 경우 (350 MHz 대역폭 모델의 경우 5 ns ~ 10 초)
- 10 ns ~ 10 초 : >< 한정자의 경우, 상한 및 하한 설정 사이에 최소 5 ns 이상의 차이가 있어야 함

펄스 폭 트리거미만 (<) 한정자를 선택한 경우, 엔트리 노브를 사용하여 소프트키에 표시되
는 시간 값보다 작은 펄스 폭에 트리거하도록 오실로스코프를 설정할 수 있습설정 소프트키니다.

10 트리거

- 시간 범위 (><) 한정자를 선택한 경우, 엔트리 노브를 사용하여 상한 시간 범 위 값을 설정할 수 있습니다.
- 펄스 폭 트리거· 초과 (>) 한정자를 선택한 경우, 엔트리 노브를 사용하여 소프트키에 표시되> 한정자 시간는 시간 값보다 큰 펄스 폭에 트리거하도록 오실로스코프를 설정할 수 있습니설정 소프트키다.
 - 시간 범위 (><) 한정자를 선택한 경우, 엔트리 노브를 사용하여 하한 시간 범 위 값을 설정할 수 있습니다.

패턴 트리거

패턴 트리거는 특정 패턴을 검색하여 트리거 조건을 식별합니다. 이 패턴은 채 널의 로직 AND 조합입니다. 각 채널의 값은 0(낮음), 1(높음), 상관 없음(X) 중 하나일 수 있습니다. 패턴에 속한 채널 하나에 상승 또는 하강 에지를 지정할 수 있습니다. 또한 "16 진수 버스 패턴 트리거 " 146 페이지의 설명처럼 16 진수 버스 값에 대한 트리거도 가능합니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 패턴을 선 택합니다.
- 채널 소프트키를 눌러 원하는 패턴에 포함시킬 각 아날로그 또는 디지털 채널 을 선택합니다.

이는 0, 1, X 또는 에지 조건에 해당하는 채널 소스입니다 . **채널** 소프트키를 누르면 (또는 엔트리 노브를 돌리면) 선택한 채널이 소프트키 바로 위에 있 는 패턴 = 라인과 디스플레이 오른쪽 위 모서리 "Pat" 옆에 강조 표시됩니다

선택한 아날로그 채널에 대한 트리거 레벨을 트리거 레벨 노브를 돌려 조정합 니다. [Digita](디지털) 키를 누르고 **임계값**을 선택하여 디지털 채널에 대한 임계값 레벨을 설정합니다. 트리거 레벨 값 또는 디지털 임계값은 디스플레 이 오른쪽 상단 구석에 표시됩니다.

4 선택한 각 채널에서 패턴 소프트키를 누른 다음 엔트리 노브를 돌려 패턴의 해당 채널에 적용할 조건을 설정하십시오.

- **0**은 선택한 채널에서 패턴을 0(낮음)으로 설정합니다. 낮음은 채널의 트리거 레벨이나 임계값 레벨보다 낮은 전압 레벨을 의미합니다.
- 1 은 선택한 채널에서 패턴을 1(높음)로 설정합니다. 높음은 채널의 트 리거 레벨이나 임계값 레벨보다 큰 전압 레벨을 의미합니다.
- X는 선택한 채널에서 패턴을 상관 없음으로 설정합니다. 상관 없음으로 설정된 채널은 무시되고 패턴의 일부로 사용되지 않습니다. 단, 패턴에 속 한 모든 채널이 상관 없음으로 설정된 경우에는 오실로스코프가 트리거하 지 않습니다.
- 상승 에지 (▲) 또는 하강 에지 (▲) 소프트키는 선택한 채널에서 패턴을 에 지로 설정합니다. 패턴에서 하나의 상승 또는 하강 에지만 지정할 수 있습 니다. 에지가 지정되면 다른 채널에 설정된 패턴이 참인 경우, 지정된 에 지에서 오실로스코프가 트리거합니다.

에지가 지정되지 않은 경우 오실로스코프는 패턴을 참으로 만든 마지막 에 지에 트리거합니다.

_____패턴 내에서 에지 지정

패턴 내에서 단 하나의 상승 또는 하강 에지 조건만을 지정할 수 있습니다. 에지 조건을 정의한 다음, 패턴 내에서 다른 채널을 선택하여 다른 에지 조건을 정의 하는 경우 이전 에지 정의가 상관 없음으로 변경됩니다. 10 트리거

16 진수 버스 패턴 트리거

트리거할 버스 값을 지정할 수 있습니다. 그러려면 먼저 버스를 정의해야 합니 다. 자세한 내용은 "디지털 채널을 버스로 표시하려면 "108 페이지 을 참조하 십시오. 버스의 표시 여부에 관계없이 버스 값에 트리거할 수 있습니다.

버스 값에 트리거하려면 :

- 1 전면 패널에 있는 [Pattern](패턴) 키를 누릅니다.
- 2 채널 소프트키를 누르고 엔트리 노브를 돌려 버스1 또는 버스2를 선택합니다.
- 3 자리 소프트키를 누르고 엔트리 노브를 돌려 선택한 버스의 자릿수를 선택합 니다.
- 4 16 진수 소프트키를 누르고 엔트리 노브를 돌려 해당 자리의 값을 선택합니다.
- 참 고 자리가 4 비트 미만으로 구성된 경우, 자리의 값이 선택된 비트로 생성할 수 있 는 값으로 제한됩니다.
 - 5 모든 자리 설정 소프트키를 사용하여 모든 자리를 특정 값으로 설정할 수 있 습니다.

16 진수 버스 자리에 하나 이상의 상관 없음 (X) 비트와 값이 있는 비트 하나 이 상 0 또는 1 이 포함된 경우, 해당 자리에 "\$" 기호가 표시됩니다.

패턴 트리거링 중 디지털 버스 디스플레이와 관련된 내용은 "패턴 트리거를 사용할 때 버스 값 표시하기 "110 페이지를 참조하십시오.

OR 트리거

OR 트리거 모드는 아날로그 또는 디지털 채널에서 지정된 에지 중 하나 이상이 발견되는 경우 트리거됩니다.

- 1 전면 패널의 트리거 부분에서 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누르고 엔트리 노브를 사용하여 OR을 선택합니다.

- 3 기울기 소프트키를 누르고 상승 에지, 하강 에지, 상승 또는 하강 에지, 또는 상관없음을 선택합니다. 선택한 기울기가 디스플레이 오른쪽 상단 모서리에 표시됩니다.
- 4 채널 소프트키를 눌러 OR 트리거에 포함할 각 아날로그 또는 디지털 채널을 선택합니다.

채널 소프트키를 누르면 (또는 엔트리 노브를 돌리면) 선택한 채널이 소프트 키 바로 위에 있는 OR = 라인과 디스플레이 오른쪽 위 모서리 OR 게이트 기 호 옆에 강조 표시됩니다.

선택한 아날로그 채널에 대한 트리거 레벨을 트리거 레벨 노브를 돌려 조정합 니다. [Digital](디지털) 키를 누르고 **임계값**을 선택하여 디지털 채널에 대한 임계값 레벨을 설정합니다. 트리거 레벨 값 또는 디지털 임계값은 디스플레 이 오른쪽 상단 구석에 표시됩니다.

5 선택한 각 채널에 대해 **기울기** 소프트키를 누르고 ▲ (상승), ▶ (하강), ↓ (상승 또는 하강) 또는 X(상관없음)를 선택합니다. 선택한 기울기가 소프트 키 위에 표시됩니다.

OR 트리거에 있는 모든 채널이 상관없음으로 설정된 경우, 오실로스코프가 트리거되지 않습니다.

6 기울기 소프트키에서 선택된 에지의 모든 아날로그와 디지털 채널을 설정하 려면, 모든 에지 설정 소프트키를 누릅니다. 상승 / 하강 시간 트리거

상승 / 하강 시간 트리거는 특정 시간보다 길거나 짧은 동안 한 레벨에서 다른 레 벨로 일어나는 상승 또는 하강 전환을 검색합니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 상승 / 하 강 시간을 선택합니다.

- 3 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 입력 채널 소스를 선택합니다.
- 4 상승 에지 또는 하강 에지 소프트키를 누르면 에지 유형이 서로 전환됩니다.

- 5 레벨 선택 소프트키를 누르고 높음을 선택한 다음, 트리거 레벨 노브를 돌려 상위 레벨을 조정합니다.
- 6 레벨 선택 소프트키를 누르고 낮음을 선택한 다음, 트리거 레벨 노브를 돌려 하위 레벨을 조정합니다.
 - 또한 트리거 레벨 노브를 누르면 높음과 낮음 선택을 전환할 수 있습니다.
- 7 한정자 소프트키를 누르면 "초과 "또는 "미만 "이 전환됩니다.
- 8 시간 소프트키를 누른 다음, 엔트리 노브를 돌려 시간을 선택합니다.

N 차 에지 버스트 트리거

N 차 에지 버스트 트리거를 사용하면 유휴 시간 후에 발생하는 버스트의 N 차 에지에 트리거할 수 있습니다.

N 차 에지 버스트 트리거 설정은 소스, 에지 기울기, 유휴 시간, 에지 수를 선택 하는 과정으로 구성됩니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음, 엔트리 노브를 돌려 N 차 에 지 버스트를 선택합니다.

- 3 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 입력 채널 소스를 선택합니다.
- 4 슬로프 소프트키를 누르고 에지의 기울기를 지정합니다.
- 5 비활동 소프트키를 누른 다음, 엔트리 노브를 돌려 유휴 시간을 지정합니다.
- 6 에지 소프트키를 누른 다음, 엔트리 노브를 돌려 트리거할 에지 수를 선택합 니다.

런트 트리거

런트 트리거는 단 하나의 임계값에만 교차하는 펄스를 찾습니다.

- 양의 런트 펄스는 하위 임계값에 교차하지만 상위 임계값에는 교차되지 않습 니다.
- 음의 런트 펄스는 상위 임계값에 교차하지만 하위 임계값에는 교차되지 않습 니다.

런트 펄스에 트리거하려면 :

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 런트를 선 택합니다.

- 3 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 입력 채널 소스를 선택합니다.
- 4 양, 음 또는 어느 한쪽 런트 펄스 소프트키를 누르면 펄스 유형이 서로 전환 됩니다.
- 5 레벨 선택 소프트키를 누르고 높음을 선택한 다음, 트리거 레벨 노브를 돌려 상위 레벨을 조정합니다.
- 6 레벨 선택 소프트키를 누르고 낮음을 선택한 다음, 트리거 레벨 노브를 돌려 하위 레벨을 조정합니다.

또한 트리거 레벨 노브를 누르면 높음과 낮음 선택을 전환할 수 있습니다.

7 한정자 소프트키를 누르면 "미만", "초과 "또는 없음이 전환됩니다.

그러면 런트 펄스를 일정한 폭보다 작거나 크게 지정할 수 있습니다.

8 "미만 "또는 "초과 " 한정자를 선택한 경우, 시간 소프트키를 누른 다음 엔 트리 노브를 돌려 시간을 선택합니다.

설정 및 유지 트리거

설정 및 유지 트리거는 설정 및 유지 위반을 찾습니다.

한 오실로스코프 채널은 클럭 신호를 검사하며, 다른 채널은 데이터 신호를 검 사합니다.

설정 및 유지 위반에 트리거하려면:

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 설정 및 유지를 선택합니다.
- 3 클럭 소프트키를 누른 다음, 엔트리 노브를 돌려 클럭 신호가 포함된 입력 채 널을 선택합니다.
- 4 트리거 레벨 노브를 사용하여 클럭 신호에 적절한 트리거 레벨을 설정합니다
- 5 상승 에지 또는 하강 에지 소프트키를 눌러 사용 중인 클럭 에지를 지정합니 다.
- 6 데이터 소프트키를 누른 다음, 엔트리 노브를 돌려 데이터 신호가 포함된 입 력 채널을 선택합니다.
- 7 트리거 레벨 노브를 사용하여 데이터 신호에 적절한 트리거 레벨을 설정합니다.
- 8 < 설정 소프트키를 누른 다음 엔트리 노브를 돌려 설정 시간을 선택합니다.

9 < 유지 소프트키를 누른 다음 엔트리 노브를 돌려 유지 시간을 선택합니다.

비디오 트리거

비디오 트리거는 대다수 표준 아날로그 비디오 신호의 복잡한 파형을 캡처하는 데 사용됩니다. 트리거 회로는 파형의 수직 및 수평 간격을 검출하여 선택한 비 디오 트리거 설정에 따라 트리거를 발생시킵니다.

오실로스코프의 MegaZoom IV 기술을 통해 비디오 파형의 모든 부분을 손쉽게 밝은 화면으로 볼 수 있습니다. 또한 오실로스코프에서 비디오 신호의 선택된 라인에 트리거할 수 있으므로 비디오 파형의 분석이 간편합니다.

- 참 고 10:1 패시브 프로브를 사용할 때는 프로브를 정확하게 보정하는 것이 중요합니 다. 오실로스코프는 이에 민감하며, 특히 프로그레시브 형식의 경우 프로브가 제대로 보정되지 않으면 트리거되지 않습니다.
 - 1 [Trigger](트리거) 키를 누릅니다.
 - 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 비디오를 선택합니다.

3 소스 소프트키를 누르고 비디오 트리거 소스로 아날로그 채널을 선택합니다.

선택한 트리거 소스는 디스플레이 오른쪽 상단 모서리에 표시됩니다. 트리거 레벨이 동기 필스에 자동으로 설정되므로 트리거 **레벨** 노브를 돌려도 트리거 레벨이 변경되지 않습니다. 트리거 모드와 커플링 메뉴에서 트리거 커플링은 자동으로 TV 로 설정됩니다.

차 그 정확한 매칭 제공

대다수의 비디오 신호는 75 Ω 소스로부터 제작됩니다 . 이러한 소스에 정확한 매칭을 제공하려면 오실로스코프 입력에 75 Ω 터미네이터 (예: Keysight 11094B) 를 연결해야 합니다 .

- 4 동기 극성 소프트키를 누르고 비디오 트리거를 양(∏) 또는 음(∐)의 동기 극성으로 설정합니다.
- 5 설정 소프트키를 누릅니다.

6 비디오 트리거 메뉴에서 표준 소프트키를 눌러 비디오 표준을 설정합니다.

이 오실로스코프는 다음 텔레비전 (TV) 및 비디오 표준에 대한 트리거를 지 원합니다.

표준	유형	동기 펄스
NTSC	인터레이스	바이 레벨
PAL	인터레이스	바이 레벨
PAL-M	인터레이스	바이 레벨
SECAM	인터레이스	바이 레벨

- **7 자동 설정** 소프트키를 눌러 선택한 오실로스코프를 소스 및 표준에 대해 자동 으로 설정합니다.
 - 소스 채널 수직 스케일링이 140mV/div 로 설정됩니다.
 - 소스 채널 오프셋이 245mV 로 설정됩니다.
 - 소스 채널이 켜집니다.
 - 트리거 유형이 비디오로 설정됩니다.
 - 비디오 트리거 모드가 모든 라인으로 설정됩니다.
 - 디스플레이 격자 유형이 IRE(표준이 NTSC 인 경우) 또는 mV 로 설정됩니다 (" 격자 유형을 선택하려면 " 126 페이지 참조).
 - 수평 time/div 는 NTSC/PAL/SECAM 표준의 경우 10µs/div 로 설정됩니 다.
 - 수평 지연이 트리거가 왼쪽부터 첫 번째 수평 눈금에 있도록 설정됩니다.

[Analyze](분석) > 기능을 누른 다음 비디오를 선택하여 비디오 트리거링 자동 설정 및 표시 옵션에 빠르게 액세스할 수도 있습니다.

8 모드 소프트키를 누르고 비디오 신호에서 트리거하려는 부분을 선택합니다.

사용 가능한 비디오 트리거 모드는 다음과 같습니다.

- 필드1및 필드2 필드1 또는 필드2의 첫 번째 톱니 펄스의 상승 에지 에 트리거(인터레이스 표준에 한함)
- 모든 필드 수직 동기 간격 내 첫 번째 펄스의 상승 에지에 트리거
- 모든 라인 모든 수평 동기 펄스에 트리거
- 라인: 필드 1 및 라인: 필드 2 필드 1 또는 필드 2 의 선택된 라인 번호에 트리거(인터레이스 표준에 한함)

- **라인 : 교대** 필드 1 및 필드 2 의 선택된 라인 번호에 교대로 트리거 (NTSC, PAL, PAL-M, SECAM 에 한함)
- **9** 라인 번호 모드를 선택한 경우, **라인 번호** 소프트키를 누른 다음 엔트리 노브 를 돌려 트리거하려는 라인 번호를 선택합니다.

다음 표에는 각 비디오 표준의 필드당 라인 (또는 카운트) 번호가 나와 있습 니다.

비디오 표준	필드 1	필드 2	대체 필드
NTSC	1 ~ 263	1 ~ 262	1 ~ 262
PAL	1 ~ 313	314 ~ 625	1~312
PAL-M	1 ~ 263	264 ~ 525	1 ~ 262
SECAM	1 ~ 313	314 ~ 625	1~312

비디오 트리거 다음은 비디오 트리거링에 익숙해질 수 있는 예입니다. 이 예에서는 NTSC 비 링의 예 디오 표준을 사용합니다.

- "특정 비디오 라인에 트리거하려면 "156 페이지
- "모든 동기 펄스에 트리거하려면 "157 페이지
- "비디오 신호의 특정 필드에 트리거하려면 "158 페이지
- "비디오 신호의 모든 필드에 트리거하려면 "159 페이지
- " 홀수 또는 짝수 필드에 트리거하려면 " 160 페이지

특정 비디오 라인에 트리거하려면

비디오 트리거링에는 아날로그 채널을 트리거 소스로 선택한 상태에서 1/2 눈금 이상의 동기 진폭이 필요합니다. 트리거 레벨이 동기 펄스 선단에 자동으로 설 정되므로 비디오 트리거 모드에서 트리거 **레벨** 노브를 돌려도 트리거 레벨이 변 경되지 않습니다.

특정 비디오 라인에 트리거하는 한 예로, 흔히 라인 18에서 일어나는 수직 간격 테스트 신호 (VITS) 를 들 수 있습니다. 다른 예로는 일반적으로 라인 21 에서 일어나는 클로즈드 캡션 작업이 있습니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 비디오를 선택합니다.

- **3 설정** 소프트키를 누른 다음, 표준 소프트키를 눌러 적절한 TV 표준 (NTSC) 을 선택합니다.
- 4 모드 소프트키를 누르고 트리거하려는 라인의 TV 필드를 선택합니다. 라인: 필드 1, 라인: 필드 2 또는 라인: 교대를 선택할 수 있습니다.
- 5 라인 번호 소프트키를 누르고 검사하려는 라인 번호를 선택합니다.

교대 트리거링

라인 : 교대를 선택한 경우, 오실로스코프가 필드 1 과 필드 2 에서 선택된 라인 번호에 교대로 트리거합니다. 이는 필드 1 VITS 와 필드 2 VITS 를 비교하거나 필드 1 의 종료 부분에 절반 라인이 정확하게 삽입되었는지 검사할 수 있는 신속 한 방법입니다.

그림 27 예:라인 136 에 트리거링

모든 동기 펄스에 트리거하려면

최대 비디오 레벨을 신속하게 찾으려면 모든 동기 펄스에 트리거하면 됩니다. 비디오 트리거 모드로 **모든 라인**을 선택하면 오실로스코프가 모든 수평 동기 펄 스에 트리거합니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 비디오를 선택합니다.
- 3 설정 소프트키를 누른 다음, 표준 소프트키를 눌러 적절한 TV 표준을 선택합니다.

그림 28 모든 라인에 트리거링

비디오 신호의 특정 필드에 트리거하려면

비디오 신호의 성분을 검사하려면 필드 1 또는 필드 2 중 하나에 트리거해야 합 니다(인터리브 표준에서 사용 가능). 특정 필드를 선택하면 오실로스코프가 지 정된 필드(1 또는 2)에 포함된 수직 동기 간격에서 첫 번째 톱니 펄스의 상승 에지에 트리거합니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 **트리거** 소프트키를 누른 다음 엔트리 노브를 돌려 비디오를 선택합니다.
- 3 설정 소프트키를 누른 다음, 표준 소프트키를 눌러 적절한 TV 표준을 선택합 니다.

4 모드 소프트키를 누르고 필드 1 또는 필드 2 를 선택합니다.

그림 29 필드 1 에 트리거링

비디오 신호의 모든 필드에 트리거하려면

필드 사이의 전환을 빠르고 간편하게 확인하거나, 필드 사이의 진폭 차이를 찾 으려면 모든 필드 트리거 모드를 사용하십시오.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 비디오를 선택합니다.
- 3 설정 소프트키를 누른 다음, 표준 소프트키를 눌러 적절한 TV 표준을 선택합니다.
- 4 모드 소프트키를 누르고 모든 필드를 선택합니다.

그림 30 모든 필드에 트리거링

홀수 또는 짝수 필드에 트리거하려면

비디오 신호의 포락선을 검사하거나 최악의 왜곡 사례를 측정하려면 홀수 또는 짝수 필드에 트리거하십시오. 필드 1 을 선택한 경우 오실로스코프가 컬러 필드 1 또는 3 에 트리거하며, 필드 2 를 선택한 경우 오실로스코프가 컬러 필드 2 또 는 4 에 트리거합니다.

- 1 [Trigger](트리거) 키를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 비디오를 선택합니다.
- 3 설정 소프트키를 누른 다음, 표준 소프트키를 눌러 적절한 TV 표준을 선택합 니다.
- 4 모드 소프트키를 누르고 필드 1 또는 필드 2 를 선택합니다.

트리거 회로는 수직 싱크의 시작 부분을 찾아 필드를 판정합니다. 하지만 이러 한 필드 정의는 기준 부반송파의 위상이 고려되지 않은 것입니다. 필드 1 을 선 택한 경우, 트리거 시스템에서 수직 동기가 라인 4 에서 시작되는 모든 필드를 찾게 됩니다. NTSC 비디오의 경우 오실로스코프가 컬러 필드 1 과 컬러 필드 3 에 교대로 트리거합니다(아래 그림 참조). 이 설정은 기준 버스트의 포락선을 측정하는 데 사용할 수 있습니다.

그림 31 컬러 필드 1 과 컬러 필드 3 에 교대로 트리거링

더 상세한 분석이 필요할 경우 한 컬러 필드만 트리거되도록 선택해야 합니다. 이는 비디오 트리거 메뉴에서 **필드 흐드오프** 소프트키를 사용하여 지정할 수 있 습니다. **필드 흐드오프** 소프트키를 누르고 엔트리 노브를 사용하여 오실로스코 프가 컬러 버스트의 한 위상에만 트리거할 때까지 홀드오프를 절반의 필드 단위 로 조정합니다.

다른 위상에 빠르게 동기화하는 방법은 신호를 잠시 끊었다가 다시 연결하는 것 입니다. 정확한 위상이 표시될 때까지 반복하십시오.

필드 홀드오프 소프트키와 엔트리 노브를 사용하여 홀드오프를 조정할 때, 대응 하는 홀드오프 시간이 트리거 모드와 커플링 메뉴에 표시됩니다.

표 3 절반 필드 홀드오프 시간

표준	Time
NTSC	8.35 ms
PAL	10 ms
PAL-M	10 ms
SECAM	10 ms

그림 32 필드 홀드오프를 사용하여 컬러 필드 1 또는 3 에 동기화 (필드 1 모드)

USB 트리거

USB 트리거는 차동 USB 데이터 라인 (D+ 및 D-) 의 패킷 시작 (SOP), 패킷 끝 (EOP) 신호, 재설정 완료 (RC), 일시 중지 진입 (Suspend) 또는 일시 중지 종료 (Exit Sus) 에 트리거합니다. 이 트리거는 USB Low Speed(저속) 및 USB Full Speed(최대 속도) 를 지원합니다.

- 1 [Default Setup](기본 설정)을 누릅니다.
- 2 [Label](라벨) 키를 눌러 라벨을 켭니다.
- 3 USB 신호에 사용할 아날로그 또는 디지털 채널을 켭니다.
- 4 [Trigger](트리거) 키를 누릅니다.
- 5 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 USB 를 선택합니다.

- 6 트리거: 소프트키를 눌러 USB 트리거가 발생할 위치를 선택합니다.
 - SOP(패킷 시작) 패킷의 시작 부분에서 동기 비트에 트리거합니다.
 - EOP(패킷 끝) EOP 의 SEO 부분 끝에 트리거합니다.
 - RC(재설정 완료) SE0 이 > 10 ms 일 때 트리거합니다.
 - Suspend(일시 중지 진입) 버스가 3 ms 이상 유휴 상태일 때 트리거 합니다.

- Exit Sus(일시 중지 종료) 10 ms 이상의 유휴 상태를 종료할 때 트리 거합니다. 이 기능은 일시 중지 / 재시작 전환 상태를 확인할 때 사용됩니 다.
- 7 속도 소프트키를 눌러 프로빙할 트랜잭션의 속도를 선택합니다.

Low Speed(1.5 Mb/s) 또는 Full Speed(12 Mb/s) 를 선택할 수 있습니다.

8 D+ 및 D- 소프트키를 눌러 USB 신호 D+ 및 D- 라인에 연결된 채널을 선택 합니다. 소스 채널의 D+ 및 D- 라벨은 자동으로 설정됩니다.

D+ 또는 **D-** 소프트키를 누를 때 (또는 엔트리 노브를 돌릴 때), 소스 채널의 D+ 및 D- 라벨이 자동으로 설정되며, 선택한 채널이 디스플레이 오른쪽 위 모서리의 "USB" 옆에 표시됩니다.

오실로스코프의 아날로그 소스 채널을 D+ 및 D- 신호에 연결한 경우 D+ 또 는 D- 소프트키를 누른 다음 트리거 레벨 노브를 돌려 연결된 각 아날로그 채 널의 트리거 레벨을 파형 중간으로 조정하십시오.

오실로스코프의 디지털 소스 채널을 D+ 및 D- 신호에 연결한 경우 (이는 MSO 모델 오실로스코프에 한해 적용됨), [Digita](디지털) 키를 누르고 **임 계값**을 선택하여 디지털 채널에 적절한 임계값 레벨을 설정합니다.

트리거 레벨 값 또는 디지털 임계값은 디스플레이 오른쪽 상단 모서리에 표시 됩니다.

시리얼 트리거

시리얼 디코드 옵션 라이센스 (" 시리얼 디코드 옵션 " 117 페이지 참조)를 통해 시리얼 트리거 유형을 활성화할 수 있습니다. 이러한 트리거를 설정하려면

- "CAN 트리거링 " 319 페이지
- "I2C 트리거링 " 334 페이지
- "LIN 트리거링 " 327 페이지
- "SPI 트리거링 " 345 페이지
- "UART/RS232 트리거링 " 355 페이지

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

11 트리거 모드 / 커플링

자동 또는 일반 트리거 모드를 선택하려면 / 166 트리거 커플링을 선택하려면 / 168 트리거 노이즈 제거를 활성화 또는 비활성화하려면 / 169 트리거 HF 제거를 활성화 또는 비활성화하려면 / 169 트리거 홀드오프를 설정하려면 / 169 외부 트리거 입력 / 170

트리거 모드와 커플링 메뉴에 액세스하려면 :

• 전면 패널의 트리거 부분에서 [Mode/Coupling](모드 / 커플링) 키를 누릅니 다.

- 노이즈가 많은 프로빙하는 신호에 노이즈가 많다면 트리거 경로와 표시되는 파형에서 노이즈 신호 가 감소되도록 오실로스코프를 설정할 수 있습니다. 먼저 트리거 경로에서 노이 즈를 제거하여 표시되는 파형을 안정화합니다. 다음으로, 표시되는 파형에서 노이즈를 줄입니다.
 - 1 신호를 오실로스코프에 연결하고 안정적인 표시 상태를 확보합니다.
 - 2 고주파 제거 ("트리거 HF 제거를 활성화 또는 비활성화하려면 "169 페이지), 저주파 제거 ("트리거 커플링을 선택하려면 "168 페이지 또는 "트리거 노이즈 제거를 활성화 또는 비활성화하려면 "169 페이지)를 켜면 트리거 경로에서 노이즈를 제거할 수 있습니다.
 - **3** " 수집 모드 평균 " 182 페이지를 사용하여 표시되는 파형에서 노이즈를 줄일 수 있습니다.

자동 또는 일반 트리거 모드를 선택하려면

오실로스코프가 실행 중일 때, 트리거 모드는 트리거가 발생하지 않을 때 오실 로스코프의 동작을 지시하는 역할을 합니다.

자동 트리거 모드 (기본 설정)에서 지정한 트리거 조건을 찾을 수 없는 경우. 오실로스코프에 신호 활동을 표시할 수 있도록 트리거가 강제 적용되고 수집이 실행됩니다.

일반 트리거 모드에서는 지정한 트리거 조건이 발견될 때에 한해 트리거 및 수 집이 일어납니다.

트리거 모드를 선택하려면 :

- 1 [Mode/Couplina](모드 / 커플링) 키를 누릅니다.
- 2 트리거 모드와 커플링 메뉴에서 모드 소프트키를 누른 다음 자동 또는 일반 중 하나를 선택합니다.

아래 " 자동 트리거 모드를 사용해야 할 경우 " 167 페이지 및 " 일반 트리거 모드를 사용해야 할 경우 "167 페이지 설명을 참조하십시오.

또한 자동과 일반 트리거 모드 사이를 전화하도록 [Quick Action](빠른 실행) 키를 구성할 수도 있습니다. "[빠른 실행] 키 구성 " 280 페이지을 참조하십시 오.

오실로스코프의 실행이 시작된 후 ([Run](실행) 또는 [Single](싱글)을 누르 트리거링과 트

리거 전 및 트리

거나 트리거 조건을 변경한 후), 오실로스코프는 먼저 트리거 전 버퍼를 채웁니 거 후 버퍼 다. 그런 다음 트리거 전 버퍼가 가득차면 오실로스코프는 트리거 검색을 시작 하고, 샘플링된 데이터는 FIFO(first-in first-out) 방식으로 트리거 전 버퍼를 통해 데이터 흐름을 계속합니다.

> 트리거가 발견되면 트리거 전 버퍼에는 트리거 바로 전에 발생한 이벤트까지 포 함됩니다. 그런 다음 오실로스코프에서 트리거 후 버퍼를 채우고 수집 메모리를 표시합니다. [Run/Stop](실행 / 정지)을 통해 수집이 시작된 경우 이 절차가 반복됩니다. [Single](싱글)을 눌러 수집을 시작한 경우에는 수집이 중단됩니 다 (이 때 파형을 이동 및 축소/확대할 수 있음).

> 자동 또는 일반 트리거 모드에서 트리거 전 버퍼가 채워지는 동안 이벤트가 발 생하면 트리거가 누락될 수 있습니다. 이는 예를 들어. 수평 스케일 노브가 500 ms/div 와 같이 느린 time/div 설정으로 지정되었을 때 더 가능성이 높아짐 니다.

트리거 표시기 디스플레이의 상단 오른쪽에 있는 트리거 표시기가 트리거 발생 여부를 나타냅 니다.

자동 트리거 모드에서 트리거 표시기는 다음과 같은 사항을 나타낼 수 있습니다

- **자동**?(깜박임) 트리거 조건이 발견되지 않았으며(트리거 전 버퍼가 채 워진 후), 강제 트리거 및 수집이 실행 중입니다.
- **자동** (깜박이지 않음) 트리거 조건이 발견되었습니다 (또는 트리거 전 버 퍼가 채워지는 중).

일반 트리거 모드에서 트리거 표시기는 다음과 같은 사항을 나타낼 수 있습니다

- Trig'd?(깜박임) 트리거 조건이 발견되지 않았으며 (트리거 전 버퍼가 채 워진 후), 수집이 실행되지 않고 있습니다.
- Trig'd(깜박이지 않음) 트리거 조건이 발견되었습니다 (또는 트리거 전 버퍼가 채워지는 중).

오실로스코프가 실행되지 않을 때, 트리거 표시 영역은 정지 상태를 나타냅니다

자동 트리거 모 자동 트리거 모드는 다음과 같은 경우에 적합합니다.

- 드를 사용해야 할 경우 · DC 신호 또는 알 수 없는 레벨이나 동작의 신호를 검사할 때
 - 강제 트리거가 불필요할 정도로 트리거 조건이 자주 발생할 때
- 일반 트리거 모 일반 트리거 모드는 다음과 같은 경우에 적합합니다.
 - 트리거 설정으로 지정한 특정 이벤트만 수집하기를 원할 때
 - 시리얼 버스 (예: I2C, SPI, CAN, LIN 등)에서 나오는 간헐적인 신호 또는 버스트 형태로 도달하는 다른 신호를 트리거할 때. 일반 트리거 모드를 사용 하면 오실로스코프의 자동 트리거링을 방지하여 디스플레이를 안정화할 수 있습니다.
 - [Single](싱글) 키를 사용한 싱글샷 수집 실행

싱글샷 수집의 경우 대개 테스트 대상 장치에서 일종의 동작을 개시해야 하며 , 그 전에 오실로스코프의 자동 트리거가 일어나는 것은 바람직하지 않습니다 . 회로에서 동작을 개시하기 전에, 트리거 조건 표시기 **Trig'd?** 가 깜박일 때 (이는 트리거 전 버퍼가 채워졌음을 나타냄)까지 기다리십시오.

관련 항목 • "트리거 강제 적용 "137 페이지

드를 사용해야

할 경우

- "트리거 홀드오프를 설정하려면 "169 페이지
- "시간 기준 위치를 설정하려면 (왼쪽, 중앙, 오른쪽)" 54 페이지

11 트리거 모드 / 커플링

트리거 커플링을 선택하려면

- 1 [Mode/Coupling](모드 / 커플링) 키를 누릅니다.
- 2 트리거 모드와 커플링 메뉴에서 커플링 소프트키를 누른 다음 엔트리 노브를 돌려 다음 중 하나를 선택합니다.
 - DC 커플링 트리거 경로에 DC 및 AC 신호를 통과시킬 수 있습니다.
 - AC 커플링 트리거 경로에 10 Hz 고역 통과 필터를 배치하여 트리거 파 형에서 DC 오프셋 전압을 모두 제거합니다.

외부 트리거 입력 경로의 고역 통과 필터는 모든 모델에서 50 Hz 입니다.

파형에 큰 DC 오프셋이 있을 경우, AC 커플링을 사용하면 안정적인 에지 트리거를 얻을 수 있습니다.

• LF(저주파) 제거 커플링 — 트리거 파형에 직렬로 50 kHz 에서 3dB 포인 트에 해당하는 고역 통과 필터를 추가합니다.

저주파 제거 기능은 트리거 파형에서 적절한 트리거링에 방해가 될 수 있 는 전원 라인 주파수 등과 같은 불필요한 저주파 성분을 제거합니다.

파형에 저주파수 노이즈가 있을 경우 LF 제거 커플링을 사용하면 안정적인 에지 트리거를 얻을 수 있습니다.

• TV 커플링 — 일반적으로 음영 처리되어 있지만, 트리거 메뉴에서 TV 트 리거를 활성화하면 자동으로 선택됩니다.

트리거 커플링은 채널 커플링과 별개임에 유의하십시오 (" 채널 커플링을 지정 하려면 " 61 페이지 참조).

트리거 노이즈 제거를 활성화 또는 비활성화하려면

노이즈 제거 기능은 트리거 회로에 이력 (hysteresis) 을 추가합니다. 트리거 이 력 대역을 늘리면 노이즈에 트리거할 가능성이 줄어듭니다. 하지만 트리거 감도 도 낮아지므로 오실로스코프의 트리거에는 약간 더 큰 신호가 필요합니다.

- 1 [Mode/Coupling](모드 / 커플링) 키를 누릅니다.
- 2 트리거 모드와 커플링 메뉴에서 노이즈 제거 소프트키를 눌러 활성화 또는 비 활성화합니다.

트리거 HF 제거를 활성화 또는 비활성화하려면

HF 제거 기능은 트리거 경로에 50 kHz 저역 통과 필터를 추가하여 트리거 파형 에서 고주파 성분을 제거합니다.

HF 제거 기능을 사용하여 트리거 경로에서 AM 또는 FM 방송국이나 고속 시스 템 클럭에서 발생하는 노이즈와 같은 고주파 노이즈를 제거할 수 있습니다.

- 1 [Mode/Coupling](모드 / 커플링) 키를 누릅니다.
- 2 트리거 모드와 커플링 메뉴에서 HF 제거 소프트키를 눌러 활성화 또는 비활 성화합니다.

트리거 홀드오프를 설정하려면

트리거 홀드오프는 오실로스코프가 트리거 회로를 재준비하기 전까지 트리거를 기다리는 시간을 설정합니다.

홀드오프를 사용하여 반복되는 파형 사이에 복수의 에지 (또는 다른 이벤트)가 있는 반복적인 파형에 트리거할 수 있습니다. 또한 버스트 사이의 최소 시간을 알 경우, 홀드오프를 사용하여 버스트의 첫 번째 에지에 트리거할 수 있습니다.

예를 들어, 아래에 표시된 반복적인 펄스 버스트에서 안정적인 트리거를 확보하 려면 홀드오프 시간을 >200 ns ~ <600 ns 범위로 설정해야 합니다.

트리거 홀드오프를 설정하려면 :

- 1 [Mode/Coupling](모드 / 커플링) 키를 누릅니다.
- 2 트리거 모드와 커플링 메뉴에서 홀드오프 소프트키를 누른 다음 엔트리 노브 를 돌려 트리거 홀드오프 시간을 늘리거나 줄입니다.
- 트리거 홀드오 정확한 홀드오프 설정은 대개 파형의 1 회 반복보다 약간 짧습니다. 홀드오프를 프 사용 힌트 이러한 시간으로 설정하면 반복적인 파형에 대해 고유한 트리거 포인트를 생성 할 수 있습니다.

타임 베이스 설정을 변경해도 트리거 홀드오프 시간에는 영향이 없습니다.

Keysight MegaZoom 기술을 통해 **[Stop]**(정지)을 누른 다음 데이터를 이동 및 축소/확대하여 파형이 반복되는 부분을 찾을 수 있습니다. 커서를 사용하여 이 시간을 측정한 다음 홀드오프를 설정하십시오.

외부 트리거 입력

몇 가지 트리거 유형에서 외부 트리거 입력을 소스로 사용할 수 있습니다. 외부 트리거 BNC 입력은 후면 패널에 있으며 EXT TRIG IN 이라는 라벨이 부착되어 있습니다.

🔁 🔁 🕐 오실로스코프 외부 트리거 입력에서의 최대 전압

300Vrms, 400Vpk

1 M ohm 입력 : 57kHz 이상에서 20dB/decade 의 속도로 최소 5Vpk 까 지 감소되는 정상 상태 사인 파형의 경우 외부 트리거 입력 임피던스는 1M 옴입니다. 따라서 범용 측정에 적합한 패시브 프로브를 사용할 수 있습니다. 임피던스가 높아질수록 테스트 대상 장치에서 오 실로스코프의 로드 효과가 최소화됩니다.

EXT TRIG IN 의 단위 및 프로브 감쇠를 설정하려면 :

1 전면 패널의 트리거 부분에 있는 [Mode/Coupling] 모드 / 커플링 키를 누릅 니다.

2 트리거 모드와 커플링 메뉴에서 외부 소프트키를 누릅니다.

- **3** 외부 트리거 메뉴에서 **단위** 소프트키를 눌러 다음 중 하나를 선택합니다.
 - Volts 전압 프로브의 경우
 - Amps 전류 프로브의 경우

측정 결과, 채널 감도, 트리거 레벨에 선택한 측정 단위가 반영됩니다.

4 프로브 소프트키를 누른 다음, 엔트리 노브를 돌려 프로브 감쇠를 지정합니 다.

감쇠 계수는 0.1:1 에서 1000:1 까지 1-2-5 순서로 설정할 수 있습니다. 측정이 정확하게 이루어지려면 프로브 감쇠 계수를 올바르게 설정해야 합니 다.

11 트리거 모드 / 커플링

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

12 수집 제어

단일 수집 실행, 정지 및 구성(실행 제어) / 173 샘플링 개요 / 175 수집 모드 선택 / 179 세그먼트 메모리로 수집 / 185

이 장에서는 오실로스코프의 수집 및 동작 제어 기능을 사용하는 방법을 설명합 니다.

단일 수집 실행, 정지 및 구성(실행 제어)

[Run/Stop](실행/정지)와 [Single](싱글)의 두 가지 전면 패널 키로 오실로 스코프의 수집 시스템을 시작 및 중단할 수 있습니다.

• [Run/Stop](실행 / 정지) 키가 녹색이면 오실로스코프가 작동 중이며, 이는 트리거 조건이 만족될 때 데이터를 수집하고 있음을 의미합니다.

데이터 수집을 중단하려면 [Run/Stop](실행/정지)를 누르십시오. 정지된 상태에서는 마지막으로 수집된 파형이 표시됩니다.

• [Run/Stop](실행/정지)키가 빨간색이면 데이터 수집이 정지된 상태입니다.

디스플레이 상단의 상태 표시줄에 있는 트리거 유형 옆에 "Stop(정지)"이 표시됩니다.

데이터 수집을 시작하려면 [Run/Stop](실행 / 정지)를 누르십시오.

• 단일 수집을 캡처 및 표시하려면 (오실로스코프가 실행 중이거나 정지 상태 일 때) [Single](싱글)을 누르십시오.

12 수집 제어

[Single](싱글)실행 컨트롤을 사용하면 싱글샷 이벤트만 표시되고 이후 파 형 데이터가 교체 표시되지 않습니다. 이동 및 축소/확대 기능에 최대한의 메모리 용량을 활용하려면 [Single](싱글) 키를 사용하십시오.

[Single](성글)을 누르면 디스플레이가 지워지고, 트리거 모드가 일시적으 로 일반으로 설정되며(오실로스코프가 즉시 자동 트리거링하는 것을 방지), 트리거 회로가 준비되고, [Single](성글) 키에 불이 켜지며, 오실로스코프 가 파형을 표시하기 전에 트리거 조건이 발생하기를 기다립니다.

오실로스코프가 트리거되면 단일 수집 내용이 표시되고 오실로스코프가 멈 춥니다 ([Run/Stop](실행 / 정지) 키가 적색으로 켜짐). 다른 파형을 수집하 려면 다시 [Single](싱글)을 누르십시오.

오실로스코프가 트리거하지 않을 경우, [Force Trigger](강제 트리거) 키를 눌러 아무 것에나 트리거하도록 하고 단일 수집을 실행할 수 있습니다.

복수 수집의 결과를 표시하려면 지속성을 사용하십시오 . "지속성을 설정 또는 지우려면 "125 페이지을 참조하십시오 .

단일 및 연속 실 오실로스코프가 실행될 때 (또는 오실로스코프가 실행 후 정지된 경우)보다 단 행과 기록 길이 일 수집의 경우에 최대 데이터 기록 길이가 큽니다.

- 싱글 단일 수집에는 항상 사용 가능한 최대 메모리가 사용되며 (실행 중일 때 캡처된 수집보다 최소 2 배 이상의 메모리), 오실로스코프에 최소 2 배 이 상의 샘플이 저장됩니다. 느린 time/div 설정에서는 단일 수집에 사용 가능한 메모리가 더 많으므로 더 효율적인 샘플링 속도로 수집이 가능합니다
- 연속 실행 연속 실행 중일 때는 단일 수집의 경우에 비해 메모리가 절반으로 나뉩니다. 이는 수집 시스템에서 이전 수집을 처리하는 동안 다른 기록을 수집함으로써, 오실로스코프에서 처리할 수 있는 초당 파형의 수를 획기적으로 늘리는 기능입니다. 연속 실행 중에는 높은 파형 업데이트 속도로 입력 신호를 가장 잘 나타낼 수 있습니다.

가능한 가장 긴 기록 길이로 데이터를 수집하려면 [Single](싱글) 키를 누르십 시오.

기록 길이에 영향을 주는 설정에 대한 자세한 내용은 "길이 제어 "251 페이지 를 참조하십시오. 샘플링 개요

오실로스코프의 샘플링 및 수집 모드를 이해하려면 샘플링 원리, 앨리어싱, 오 실로스코프 대역폭 및 샘플링 속도, 오실로스코프 상승 시간, 필요한 오실로스 코프 대역폭, 메모리 용량이 샘플링 속도에 주는 영향을 파악하는 것이 도움이 됩니다.

샘플링 원리

나이키스트 샘플링 원리에는 신호를 앨리어싱 없이 고유하게 재구성하려면 최 대 주파수 f_{MAX} 인 제한적인 대역폭 (대역 제한)의 신호에서 등간격 샘플링 주 파수 f_S가 최대 주파수 f_{MAX} 보다 2 배 이상 커야 한다고 명시되어 있습니다.

f_{MAX} = f_S/2 = 나이키스트 주파수 (f_N) = 폴딩 주파수

앨리어싱

앨리어싱은 신호가 언더샘플링 (f_S < 2f_{MAX}) 될 때 발생합니다 . 앨리어싱은 부 족한 수의 샘플 포인트에서 잘못 재구성된 저주파로 인해 발생되는 신호 왜곡입 니다 .

그림 33 앨리어싱

오실로스코프 대역폭 및 샘플링 속도

오실로스코프의 대역폭은 일반적으로 입력 신호 사인파가 3 dB 감쇠되는 (-30% 의 진폭 오류) 최저 주파수로 설명됩니다.

오실로스코프의 대역폭에서, 샘플링 원리에 따르면 필요한 샘플링 속도는 $f_S = 2f_{BW}$ 입니다. 하지만 이 원리는 f_{MAX} 를 초과하는 주파수 성분 (이 경우 f_{BW}) 이 없는 것으로 가정하며, 이상적인 브릭월 (brick-wall) 주파수 응답을 갖는 시 스템이 필요합니다.

그림 34 이론적인 브릭월 주파수 응답

하지만 디지털 신호에는 기초 주파수(사각파는 기초 주파수의 사인파와 무한한 수의 기수차 고조파로 구성됨)를 초과하는 주파수 성분이 있으며, 일반적으로 500 MHz 이하의 대역폭에서 오실로스코프는 가우시안 주파수 응답을 보입니 다.

Limiting oscilloscope bandwidth (fbw) to 1/4 the sample rate (fs/4) reduces frequency components above the Nyquist frequency (fn).

그림 35 샘플링 속도 및 오실로스코프 대역폭

따라서 실질적으로 오실로스코프의 샘플링 속도가 대역폭의 4 배 이상 즉, f_S = 4f_{BW} 가 되어야 합니다. 그래야만 앨리어싱이 줄어들며, 앨리어싱이 적용된 주 파수 성분이 대폭 감쇠됩니다.

관련 항목 *오실로스코프의 샘플링 속도 대 샘플링 충실도 평가 : 가장 정확하게 디지털 측 정을 실행하는 방법*, Keysight 애플리케이션 노트 1587(http://literature.cdn.keysight.com/litweb/pdf/5989-5732EN.pdf)

오실로스코프 상승 시간

오실로스코프의 대역폭 사양과 밀접하게 연관되는 항목으로 상승 시간 사양이 있습니다. 가우시안 유형의 주파수 응답을 제공하는 오실로스코프는 10% ~ 90% 의 기준에서 약 0.35/f_{BW}의 상승 시간을 가집니다.

오실로스코프의 상승 시간은 오실로스코프가 정확하게 측정할 수 있는 가장 빠른 에지 속도가 아니라, 오실로스코프에서 만들어 낼 수 있는 가장 빠른 에지 속 도입니다. 오실로스코프의 필요 대역폭

신호를 정확하게 측정하는 데 필요한 오실로스코프의 대역폭은 신호의 주파수 가 아니라 신호의 상승 시간에 따라 결정됩니다. 다음 절차를 사용하여 오실로 스코프의 필요 대역폭을 계산할 수 있습니다.

1 가장 빠른 에지 속도를 결정합니다.

일반적으로 상승 시간 정보는 설계에 사용하는 장치의 게시된 사양에서 확인 할 수 있습니다.

2 최대 "실용 " 주파수 성분을 계산합니다.

Howard W. Johnson 박사의 저서 *High-Speed Digital Design - A Handbook of Black Magic*에 따르면, 모든 고속 에지는 주파수 성분의 무한 스펙트럼을 가집니다. 하지만 고속 에지의 주파수 스펙트럼에는 f_{knee} 보다 높은 주파수 성분이 신호의 형상을 결정하는 데 별다른 영향을 주지 않는 변 곡점 또는 " 니 (Knee)" 가 존재합니다.

fknee = 0.5 / 신호 상승 시간 (10% ~ 90% 의 임계값 기준)

fknee = 0.4 / 신호 상승 시간 (20% ~ 80% 의 임계값 기준)

3 필요한 정밀도에 해당하는 증배율을 사용하여 필요한 오실로스코프의 대역 폭을 결정할 수 있습니다.

필요한 정밀도	필요한 오실로스코프 대역폭
20%	$f_{BW} = 1.0 \times f_{knee}$
10%	$f_{BW} = 1.3 \times f_{knee}$
3%	$f_{BW} = 1.9 \times f_{knee}$

- 관련 항목 용도에 적합한 대역폭을 가진 오실로스코프 선택하기, Keysight 애플리케이션 노트 1588(http://literature.cdn.keysight.com/litweb/pdf/5989-5733EN.pdf)
 - 메모리 용량 및 샘플링 속도

오실로스코프 메모리의 포인트 수는 고정되어 있으며 오실로스코프의 아날로그 - 디지털 컨버터와 관련된 최대 샘플링 속도가 있지만, 실제 샘플링 속도는 수 집 시간 (오실로스코프의 수평 time/div 스케일에 따라 설정됨)에 의해 결정됩 니다. 샘플링 속도 = 샘플 수 / 수집 시간

예를 들어, 50,000 포인트의 메모리에 50 µs 의 데이터를 저장하는 경우 실제 샘플링 속도는 1 GSa/s 입니다.

마찬가지로, 50,000 포인트의 메모리에 50 ms 의 데이터를 저장하는 경우 실 제 샘플링 속도는 1 MSa/s 가 됩니다.

실제 샘플링 속도는 정보 영역의 오른쪽에 표시됩니다.

오실로스코프는 불필요한 샘플을 폐기 (소멸) 함으로써 실제 샘플링 속도를 달 성합니다.

수집 모드 선택

오실로스코프의 수집 모드를 선택할 때 느린 time/div 설정에서는 일반적으로 샘플이 소멸된다는 점을 명심하십시오.

느린 time/div 설정에서는 수집 시간이 길어지고 오실로스코프의 디지타이저가 메모리를 채우는 데 필요한 속도보다 빠르게 샘플링을 실행하기 때문에 유효 샘 플링 속도가 떨어지고 유효 샘플링 주기는 늘어납니다.

예를 들어 오실로스코프의 디지타이저가 1 ns(최고 샘플링 속도 1 GSa/s)의 샘플링 주기와 1 M의 메모리 용량을 가진 경우를 가정하겠습니다. 이 속도라 면 메모리는 1 ms 에 채워집니다. 수집 시간이 100 ms(10 ms/div)라면 메모 리를 채우는 데 100 개당 1 개의 샘플만이 필요합니다.

수집 모드를 선택하려면

- 1 전면 패널에 있는 [Acquire](수집) 키를 누릅니다.
- 2 수집 메뉴에서 수집 모드 소프트키를 누른 다음, 엔트리 노브를 돌려 수집 모 드를 선택합니다.

InfiniiVision 오실로스코프에는 다음과 같은 수집 모드가 있습니다.

- 평균 느린 time/div 설정에서 일반적인 소멸이 발생하며, 평균화 기능
 은 없습니다. 이 모드는 대부분의 파형에 사용할 수 있습니다. "일반 수집
 모드 "180 페이지를 참조하십시오.
- 피크 검출 느린 time/div 설정에서 유효 샘플 주기 내의 최대 및 최소 샘 플이 저장됩니다. 이 모드는 간헐적으로 발생하는 좁은 펄스를 표시하는 데 사용할 수 있습니다. "피크 검출 수집 모드 " 180 페이지를 참조하십시 오.

12 수집 제어

- 평균화 모든 time/div 설정에서 지정한 수의 트리거가 함께 평균화됩니다. 이 모드를 사용하면 대역폭 또는 상승 시간의 저하 없이 노이즈를 줄이고 주기적 신호의 분해능을 높일 수 있습니다. " 수집 모드 평균 " 182 페이지를 참조하십시오.
- 고분해능 느린 time/div 설정에서 유효 샘플링 주기 내의 모든 샘플이 평균화되며 평균 값이 저장됩니다. 이 모드는 무작위 노이즈를 줄이는 데 사용할 수 있습니다. "고분해능 수집 모드 "185 페이지를 참조하십시오.

일반 수집 모드

느린 time/div 설정의 일반 모드에서는 추가 샘플이 소멸됩니다 (즉, 일부가 폐 기됩니다). 이 모드는 대부분의 파형에서 최상의 디스플레이를 제공합니다.

피크 검출 수집 모드

피크 검출 모드를 사용할 때 일반적으로 소멸이 발생하는 느린 time/div 설정에 서는 노이즈가 과장되는 단점에도 불구하고, 간헐적이고 짧은 이벤트를 캡처하 기 위해 최소값 및 최대값 샘플이 보존됩니다. 이 모드에서는 최소한 샘플링 주 기에 해당하는 모든 펄스가 표시됩니다.

최대 샘플링 속도가 2 GSa/s 인 InfiniiVision 2000 X 시리즈 오실로스코프의 경우, 500 ps(샘플링 주기) 마다 샘플이 수집됩니다.

관련 항목 • " 글리치 또는 좁은 펄스 캡처 " 180 페이지

• " 피크 검출 모드를 사용하여 글리치 찾기 " 182 페이지

글리치 또는 좁은 펄스 캡처

글리치란 파형 내의 급속한 변화를 의미하며 일반적으로 파형에 비하여 폭이 좁 습니다. 피크 검출 모드를 사용하면 글리치 또는 좁은 펄스를 더 쉽게 볼 수 있 습니다. 피크 검출 모드에서는 좁은 글리치와 날카로운 에지가 일반 수집 모드 보다 더 밝게 표시되므로 보기가 쉽습니다.

글리치의 특성을 분석하려면 오실로스코프의 커서 또는 자동 측정 기능을 사용 하십시오.

그림 36 글리치가 포함된 사인파, 일반 모드

그림 37 글리치가 포함된 사인파, 피크 검출 모드

12 수집 제어

피크 검출 모드를 사용하여 글리치 찾기

- 1 신호를 오실로스코프에 연결하고 안정적인 표시 상태를 확보합니다.
- 2 글리치를 찾으려면 [Acquire](수집) 키를 누른 다음, 피크 검출이 선택될 때 까지 수집 모드 소프트키를 누릅니다.
- 3 [Display](디스플레이) 키를 누른 다음 ∞ 지속성 (무한 지속성) 소프트키를 누릅니다.

무한 지속성은 디스플레이를 새로운 수집 결과로 업데이트하되 이전 수집 결 과는 지우지 않습니다. 새로운 샘플 포인트는 정상 명암으로 표시되며 이전 수집 결과는 낮은 명암으로 표시됩니다. 디스플레이 영역 경계 밖에서는 파 형 지속성이 유지되지 않습니다.

이전에 수집된 포인트를 지우려면 **디스플레이 삭제** 소프트키를 누르십시오. ∞ **지속성**을 끄기 전까지는 디스플레이에 포인트가 누적됩니다.

- 4 줌 모드를 사용하여 글리치 특성을 분석합니다.
 - a ② 줌 키 (또는 [Horiz](수평) 키를 누른 다음 줌 소프트키)를 누릅니다
 - b 글리치에 더 높은 분해능을 확보하려면 타임 베이스를 확장하십시오.

수평 위치 노브 (◀▶) 를 사용하여 파형 전체를 이동하면서 글리치 주변의 일반 창에서 확대 부분을 설정할 수 있습니다.

수집 모드 평균

평균 모드를 사용하면 다수의 수집에서 평균을 산출하여 노이즈를 줄이고 수직 분해능을 높일 수 있습니다 (모든 time/div 설정에서). 평균을 사용하려면 안정 적인 트리거가 필요합니다.

- 평균 수는 2 ~ 65536 사이에서 2 의 배수 단위로 설정할 수 있습니다.
- 평균 수를 늘리면 노이즈가 감소하고 수직 분해능이 높아집니다.

# 평균	분해능 비트
2	8
4	9
16	10
64	11
≥ 256	12

평균 수를 늘리면 표시되는 파형이 파형 변화에 대해 반응하는 속도가 느려집니 다. 따라서 변화에 대한 파형의 대응 속도와 신호에서 표시되는 노이즈를 얼마 나 줄일 것인지 사이에 타협을 해야 합니다.

평균 모드를 사용하려면 :

- 1 [Acquire](수집) 키를 누른 다음, 평균 모드가 선택될 때까지 수집 모드 소 프트키를 누릅니다.
- 2 # 평균 소프트키를 누르고 엔트리 노브를 돌려 표시되는 파형에서 노이즈를 가장 잘 제거할 수 있는 평균 수를 설정합니다. 평균이 적용되는 수집의 수가 # 평균 소프트키에 표시됩니다.

12 수집 제어

그림 38 표시되는 파형의 무작위 노이즈

그림 39 무작위 노이즈를 줄이는 데 128 개의 평균이 사용됨

관련 항목 • 11 장, "트리거 모드 / 커플링," 페이지 시작 165 쪽

고분해능 수집 모드

고분해능 모드를 사용할 때 일반적으로 소멸이 발생하는 느린 time/div 설정에 서 무작위 노이즈를 줄이기 위해 추가 샘플이 평균화에 포함되며, 따라서 화면 의 트레이스가 부드러워지고 수직 분해능을 효율적으로 높아집니다.

고분해능 모드는 같은 수집에 포함된 순차적인 샘플 포인트를 평균화합니다. 4 개 평균의 계수마다 수직 분해능의 추가 비트가 생성됩니다. 수직 분해능의 추 가 비트 수는 오실로스코프의 time/div 설정 (스위프 속도)과 표시되는 샘플링 속도에 따라 결정됩니다.

time/div 설정이 느릴수록 각 표시 포인트에서 함께 평균에 합산되는 샘플의 수 가 많아집니다.

고분해능 모드는 싱글샷 및 반복 신호에 모두 사용할 수 있으며, 연산이 MegaZoom 주문형 ASIC 에서 처리되므로 파형 업데이트가 느려지지 않습니다 . 고분해능 모드는 실질적으로 저역 통과 필터와 같은 역할을 하므로 오실로스 코프의 실시간 대역폭을 제한합니다.

표시되는 샘플링 속도 (sr, 채널 당 , 최고 1 Gsa/s)	표시되는 샘플링 속도 (sr, 인터 리브 , 최고 2 Gsa/s)	분해능 비트
250 MSa/s < sr ≤ 1 Gsa/s	500 MSa/s < sr ≤ 2 Gsa/s	8
62.5 MSa/s < sr ≤ 250 MSa/s	125 MSa/s < sr ≤ 500 MSa/s	9
12.5 MSa/s < sr ≤ 62.5 MSa/s	25 MSa/s < sr ≤ 125 MSa/s	10
2.5 MSa/s < sr ≤ 12.5 MSa/s	5 MSa/s < sr ≤ 25 MSa/s	11
sr ≤ 2.5 MSa/s	sr ≤ 5 MSa/s	12

세그먼트 메모리로 수집

여러 개의 간헐적인 트리거 이벤트를 캡처하는 경우 오실로스코프의 메모리를 세그먼트로 분할하는 것이 좋습니다. 이 기능을 사용하면 장시간의 신호 비활성 상태 없이 신호 활동을 캡처할 수 있습니다.

각 세그먼트는 모든 아날로그 채널, 디지털 채널 (MSO 모델) 및 시리얼 디코드 데이터를 통해 완성됩니다.

12 수집 제어

면

세그먼트 메모리 기능을 사용할 경우, 분석 세그먼트 기능("세그먼트 메모리의 무한 지속성" 187 페이지 참조)을 사용하여 수집된 전체 세그먼트에 걸친 무한 지속성을 표시할 수 있습니다. 자세한 내용은 "지속성을 설정 또는 지우려면 " 125 페이지을 참조하십시오.

- 세그먼트 메모 1 트리거 조건을 설정합니다. (자세한 내용은 10장, "트리거," 페이지 시작 리로 수집하려 135 쪽를 참조하십시오.)
 - 2 전면 패널의 파형 부분에 있는 [Acquire](수집) 키를 누릅니다.
 - 3 세그먼트함 소프트키를 누릅니다.
 - **4** 세그먼트 메모리 메뉴에서 **세그먼트함** 소프트키를 누르면 세그먼트 메모리 수집이 활성화됩니다.
 - 5 # of Segs 소프트키를 누르고 엔트리 노브를 돌려 오실로스코프의 메모리를 분할할 세그먼트 수를 선택합니다.

메모리는 최소 2 개에서 최대 250 개의 세그먼트로 분할할 수 있습니다.

6 [Run](실행) 또는 [Single](싱글) 키를 누릅니다.

오실로스코프가 실행되며 각 트리거 이벤트에 대해 메모리 세그먼트가 채워집 니다. 오실로스코프가 여러 세그먼트를 수집할 때, 디스플레이 오른쪽 상단 영 역에 진행 상태가 표시됩니다. 오실로스코프는 메모리가 가득 찰 때까지 트리거 를 계속하며, 가득 차면 오실로스코프가 정지됩니다.

측정하는 신호에 1 초 이상의 비활성 상태가 있다면 자동 트리거를 방지하기 위 해 **일반** 트리거 모드를 선택하는 것을 고려해 보십시오. "자동 또는 일반 트리 거 모드를 선택하려면 "166 페이지을 참조하십시오.

1	5000/						1.760ទ	500.	Os/	Trig'd	÷		1.02V
								세그면	1트 D of 25	5	4	≁	KEYSIGHT TECHNOLOGIES
									/				수집 ::
												, 2	일반 DDGSa/s
					-						\checkmark	ਮਾ	
			신	행듈 ±	±시기						1	2411-	채널 ።
											DC		10.0:1
								샘플링	속도		DC		10.0:1
Ţ											DC		10.0:1
ľ											DC		
1.													
Ŧ													
_		1 (0.0	0.0										
H_													
	세그멘!	트암	🔾 Lurren	t Seg	○ # of S	- Segs							
					- 28			번트					

관련 항목 • "세그먼트 탐색" 187 페이지

- "세그먼트 메모리의 무한 지속성 "187 페이지
- "세그먼트 메모리 재준비 시간" 188 페이지
- "세그먼트 메모리에서 데이터 저장" 188 페이지

세그먼트 탐색

1 Current Seg 소프트키를 누르고 엔트리 노브를 돌려 첫 트리거 이벤트 이후 의 시간을 표시하는 시간 태그를 따라 원하는 세그먼트가 표시되도록 합니다

또한 [Navigate](이동) 키와 컨트롤을 사용하여 세그먼트를 탐색할 수도 있습 니다. "세그먼트를 탐색하려면 "56 페이지을 참조하십시오.

세그먼트 메모리의 무한 지속성

데이터를 세그먼트 메모리로 수집한 경우, 무한 지속성을 켜고 (디스플레이 메 뉴에서) 분석 세그먼트 소프트키를 눌러 무한 지속성 디스플레이를 만들 수 있 습니다.%% 분석 세그먼트 소프트키는 수집이 중단되고 세그먼트 메모리 기능 이 켜져 있을 때 표시됩니다. 세그먼트 메모리 재준비 시간

각 세그먼트가 채워진 후, 오실로스코프가 재준비되며 약 8 µs 내에 트리거 준 비가 완료됩니다.

예를 들어, 수평 time/div 컨트롤을 5 µs/div 로 설정하고, 시간 기준을 **중앙**으 로 설정한 경우 10개의 눈금을 모두 채우고 재준비하는 데 적어도 50 µs 의 시 간이 걸린다는 점을 기억하십시오. (그 중 25 µs 는 트리거 전 데이터 캡처에, 나머지 25 µs 는 트리거 후 데이터 캡처에 사용됩니다.)

세그먼트 메모리에서 데이터 저장

현재 표시되는 세그먼트 (세그먼트 저장 - 현재) 또는 전체 세그먼트 (세그먼 트 저장 - 전체)를 CSV, ASCII XY 및 BIN 데이터 형식으로 저장할 수 있습니 다.

캡처하는 데이터를 정확하게 표현하려면 충분한 포인트가 캡처되도록 길이 제 어 기능을 설정하십시오. 오실로스코프가 여러 세그먼트를 저장할 때, 디스플 레이 오른쪽 상단 영역에 진행 상태가 표시됩니다.

자세한 내용은 "CSV, ASCII XY 또는 BIN 데이터 파일을 저장하려면 "250 페이 지을 참조하십시오.

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

13 커서

커서 측정을 실행하려면 / 190 커서 예 / 192

커서는 선택한 파형 소스상의 X 축 값 및 Y 축 값을 나타내는 수평 및 수직 마커 입니다. 커서를 사용하여 오실로스코프 신호에 사용자 정의 전압, 시간, 위상 또는 비율 측정을 만들 수 있습니다.

커서 정보는 정보 영역의 오른쪽에 표시됩니다.

커서는 가시 디스플레이에만 국한되지 않습니다. 커서를 설정하고 커서가 화면 을 벗어날 때까지 파형을 이동하거나 확대 / 축소하더라도 그 값은 변경되지 않 습니다. 원래 위치로 돌아오면 커서가 계속 그 자리에 남아 있습니다.

X 커서 X 커서는 수평으로 조정되는 수직 점괘선이며 시간 (s), 주파수 (1/s), 위상 (°) 및 비율 (%) 을 측정하는 데 사용할 수 있습니다.

X1 커서는 촘촘한 수직 점괘선이고 X2 커서는 성긴 수직 점괘선입니다.

FFT 산술 기능을 소스로 사용하는 경우, X 커서는 주파수를 나타냅니다.

XY 수평 모드에서는 X 커서가 채널 1 값 (전압 또는 전류)을 나타냅니다.

선택한 파형 소스에 해당하는 X1 및 X2 커서 값은 소프트키 메뉴 영역에 표시됩 니다.

X1 과 X2 사이의 차이 (ΔX) 및 1/ΔX 이 정보 영역의 오른쪽에 있는 커서 상자에 표시됩니다.

Y 커서 Y 커서는 수직으로 조정되는 수평 점괘선이며 채널 프로브 단위 설정에 따라 전 압 또는 전류를 측정하는 데 사용하거나 비율 (%) 을 측정할 수 있습니다. 산술 기능이 소스로 사용되는 경우, 측정 단위는 이 산술 기능에 맞춰집니다.

Y1 커서는 촘촘한 수평 점괘선이고 Y2 커서는 성긴 수평 점괘선입니다.

13 커서

Y 커서는 수직으로 조정되며 일반적으로 0 dB에 상대적인 값을 나타내는 산술 FFT 의 경우를 제외하고 파형의 접지 포인트에 상대적인 값을 나타냅니다.

XY 수평 모드에서는 Y 커서가 채널 2 값 (전압 또는 전류)을 나타냅니다.

활성화된 경우 선택한 파형 소스에 해당하는 Y1 및 Y2 커서 값은 소프트키 메뉴 영역에 표시됩니다.

Y1 과 Y2 사이의 차이 (ΔY) 가 정보 영역의 오른쪽에 있는 커서 상자에 표시됩 니다.

커서 측정을 실행하려면

- 1 신호를 오실로스코프에 연결하고 안정적인 표시 상태를 확보합니다.
- 2 [Cursors](커서) 키를 누릅니다.

오른쪽 정보 영역에 커서 상자가 표시되며 커서가 " 켜져 있음 " 을 나타냅니 다. (커서를 끄려면 [Cursors](커서) 키를 다시 누르십시오.)

- 3 커서 메뉴에서 모드를 누른 다음 원하는 모드를 선택합니다.
 - 수동 ΔX, 1/ΔX 및 ΔY 값이 표시됩니다. ΔX 는 X1 과 X2 커서 사이의 차이이며, ΔY 는 Y1 과 Y2 커서 사이의 차이입니다.

- **파형 추적** 마커를 수평으로 이동하면 파형의 수직 진폭이 추적 및 측정 됩니다. 마커에 해당하는 시간 및 전압 위치가 표시됩니다. 마커 사이의 수직 (Y) 및 수평 (X) 차이가 ΔX 및 ΔY 값으로 표시됩니다.
- 2 진수 현재 X1 및 X2 커서 위치에 표시되는 파형의 로직 레벨이 소프 트키 위에 2 진수로 표시됩니다. 관련 채널의 파형 색과 일치하도록 디스 플레이가 색상으로 구분됩니다.

 16 진수 — 현재 X1 및 X2 커서 위치에 표시되는 파형의 로직 레벨이 소프 트키 위에 16 진수로 표시됩니다.

수동 및 **파형 추적** 모드는 아날로그 입력 채널에 표시되는 파형 (산술 기능 포함)에 사용할 수 있습니다.

2 진수 및 16 진수 모드는 디지털 신호 (MSO 오실로스코프 모델)에 적용됩니다.

16 진수 및 **2 진수** 모드에서 레벨은 1(트리거 레벨보다 높음), 0(트리거 레 벨보다 낮음), 중간 상태(↓) 또는 X(상관 없음)로 표시될 수 있습니다.

2 진수 모드에서는 채널이 꺼진 경우에 X가 표시됩니다.

16 진수 모드에서는 채널이 꺼진 경우 0 으로 인식됩니다.

- 4 소스 (또는 파형 추적 모드에서 X1 소스, X2 소스)를 누른 다음, 커서 값의 입력 소스를 선택합니다.
- 5 조정할 커서를 선택합니다.
 - 커서 노브를 누른 다음 커서 노브를 돌립니다. 선택을 최종 확정하려면 커 서 노브를 다시 누르거나 팝업 메뉴가 사라질 때까지 약 5 초 동안 기다리 십시오.

또는

• 커서 소프트키를 누른 다음 엔트리 노브를 돌립니다.

X1 X2 연동 및 Y1 Y2 연동 옵션을 선택하면 델타 값을 동일하게 유지하면서 두 커서 모두를 동시에 조정할 수 있습니다. 이 기능은 예를 들어 펄스 열에 서 펄스 폭 변동을 검사하는 데 유용합니다.

현재 선택된 커서는 다른 커서보다 밝게 표시됩니다.

6 커서 단위를 변경하려면 단위 소프트키를 누릅니다.

커서 단위 메뉴에서 :

X 단위 소프트키를 눌러 다음을 선택할 수 있습니다.

• 초(s).

13 커서

- Hz(1/s).
- 위상 (°) 선택되는 경우 X 커서 사용 소프트키를 사용하여 현재 X1 위치 를 0 도로 설정하고 현재 X2 위치를 360 도로 설정합니다.
- 비율(%) 선택되는 경우 X 커서 사용 소프트키를 사용하여 현재 X1 위 치를 0% 으로 설정하고 현재 X2 위치를 100% 으로 설정합니다.

Y 단위 소프트키를 눌러 다음을 선택할 수 있습니다.

- 베이스 소스 파형에 사용되는 동일한 단위입니다.
- 비율(%) 선택되는 경우 Y 커서 사용 소프트키를 사용하여 현재 Y1 위 치를 0% 으로 설정하고 현재 Y2 위치를 100% 으로 설정합니다.

위상 또는 비율 단위의 경우 0 및 360 도 또는 0 및 100% 위치가 설정된 후 커서를 조정하면 설정 위치를 기준으로 측정이 표시됩니다.

7 커서 노브를 돌려 선택된 커서를 조정할 수 있습니다.

커서 예

그림 40 중간 임계값 포인트 이외의 펄스 폭을 측정하는 데 사용되는 커서

그림 41 펄스 링잉의 주파수를 측정하는 커서

줌 모드를 사용하여 디스플레이를 확대한 다음 , 커서로 관심 이벤트의 특성을 분석합니다 .

그림 42 줌 윈도우를 추적하는 커서

X1 커서를 펄스의 한 쪽에 배치하고 X2 커서를 펄스의 다른 쪽에 배치합니다.

그림 43 커서를 사용한 펄스 폭 측정

X1 X2 연동 소프트키를 누르고 커서를 함께 움직여 펄스 열 내의 펄스 폭 변동 을 검사할 수 있습니다. 13 커서

그림 44 커서를 함께 움직여 펄스 폭 변동 검사

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

14 측정

자동 측정 방법 / 197 측정 요약 / 199 전압 측정 / 201 시간 측정 / 208 측정 임계값 / 213 줌 디스플레이가 적용된 측정 창 / 215

[Meas] 측정 키 파형에 대한 자동 측정을 수행할 수 있습니다. 일부 측정 기능 은 아날로그 입력 채널에서만 사용할 수 있습니다.

최근에 선택한 4 개의 측정 결과가 화면 오른쪽 측정 정보 영역에 표시됩니다.

측정 대상 파형에서 가장 최근에 선택한 측정 (오른쪽 측정 영역에서 가장 아래 쪽) 에 해당하는 부분을 나타내는 커서가 켜집니다 .

차 고 수집 후 처리

수집 후 디스플레이 파라미터를 변경하는 것 외에, 수집 후에 모든 측정 및 산술 기능을 실행할 수 있습니다. 이동 및 확대 / 축소를 적용하거나 채널을 켜고 끄 면 측정 및 산술 기능이 재계산됩니다. 수평 스케일 노브와 수직 Volts/division(볼트 / 눈금)을 사용하여 신호를 축소 및 확대하면 디스플레이의 해상도가 변경 됩니다. 측정 및 산술 기능이 표시되는 데이터에 대해 실행되므로, 기능 및 측 정 분해능에도 영향이 있습니다.

자동 측정 방법

1 [Meas] 측정 키를 눌러 측정 메뉴를 표시합니다.

2 소스 소프트키를 눌러 채널을 선택하고, 실행 중인 산술 기능 또는 측정할 기 준 파형을 선택합니다.

표시되는 채널, 산술 기능 또는 기준 파형만 측정에 사용할 수 있습니다.

- 참 고 측정에 필요한 파형 일부가 표시되지 않거나 측정하기에 충분한 분해능이 표시 되지 않는 경우 (전체 스케일의 약 4%), 결과가 "No Edges(에지 없음)", "Clipped(잘림)", "Low Signal(신호 낮음)" (진폭이 충분하지 않음), "< value(< 값)" 또는 "> value(> 값)" 로 표시되거나 측정을 신뢰하기 어려울 수 있음을 나타내는 유사한 메시지가 표시됩니다.
 - 3 유형 소프트키를 누른 다음 엔트리 노브를 돌려 실행할 측정을 선택합니다.

측정 유형에 대한 자세한 내용은 " 측정 요약 " 199 페이지 단원을 참조하십시 오.

4 일부 측정의 경우 추가 측정 설정을 지정할 수 있는 **설정** 소프트키를 사용할 수 있습니다.

- 5 측정 추가 소프트키를 누르거나 엔트리 노브를 누르면 측정이 표시됩니다.
- 6 측정을 중단하려면 [Meas] 측정 키를 다시 누릅니다.

디스플레이에서 측정이 지워집니다.

7 하나 이상의 측정을 중단하려면 측정값 지움 소프트키를 누르고 지울 측정 내용을 선택하거나 모두 지우기를 누릅니다.

모든 측정이 지워진 후에 [Meas] 측정을 다시 누르면 주파수 및 피크 - 피크 가 기본 측정이 됩니다.

측정 요약

아래 표에는 오실로스코프에서 제공하는 자동 측정 기능이 열거되어 있습니다. 아날로그 채널 파형에 대해서는 모든 측정이 가능합니다. FFT 를 제외한 산술 파형에 대해서는 카운터를 제외한 모든 측정이 가능합니다. 산술 FFT 파형과 디지털 채널 파형에 대해서는 한정적인 일련의 측정만이 가능합니다(아래 표의 설명 참조).

측정	산술 FFT에 유효*	디지털 채널 에 유효	참고
" 모든 스냅샷 " 200 페이 지			
" 진폭 " 202 페이지			
" 평균 " 205 페이지	예 , 전 체 화 면		
" <mark>최저값</mark> " 203 페이지			
"지연"211 페이지			두 소스 사이를 측정합니다 . 설 정 을 눌러 두 번째 소스를 지정 합니다 .

측정	산술 FFT에 유효*	디지털 채널 에 유효	참고			
<mark>" 듀티 사이클</mark> " 210 페이 지		ભા				
" <mark>하강 시간</mark> " 210 페이지						
" 주파수 " 209 페이지		ભા				
" <mark>최대값</mark> " 202 페이지	ଜା					
" <mark>최소값</mark> " 202 페이지	ଜା					
" <mark>오버슈트</mark> " 203 페이지						
" 피크 - 피크 " 202 페이지	ଜା					
" 주기 " 208 페이지		ભા				
" 위상 " 212 페이지			두 소스 사이를 측정합니다 . 설 정 을 눌러 두 번째 소스를 지정 합니다 .			
" 프리슈트 " 205 페이지						
<mark>" 상승 시간</mark> " 210 페이지						
"DC RMS" 206 페이지						
" <mark>AC RMS</mark> " 206 페이지						
" 최고값 " 202 페이지						
"+ 폭 " 210 페이지		ભા				
"- 폭 " 210 페이지		ભા				
* 커서를 사용하여 FFT 에 대한 다른 측정을 실행합니다 .						

모든 스냅샷

모든 스냅샷 측정 유형은 모든 단일 파형 측정의 스냅샷이 포함된 팝업을 표시 합니다 .

또한 모든 스냅샷 팝업을 표시하도록 [Quick Action](빠른 실행) 키를 구성할 수도 있습니다. "[빠른 실행] 키 구성 "280 페이지을 참조하십시오.

전압 측정

다음 그림은 전압 측정 포인트를 보여줍니다.

각 입력 채널의 측정 단위는 채널 **프로브 단위** 소프트키를 사용하여 전압 또는 전류로 설정할 수 있습니다. " 채널 단위를 지정하려면 " 63 페이지 단원을 참조 하십시오.

산술 파형의 단위는 "산술 파형의 단위 "70 페이지에 설명되어 있습니다.

- "피크-피크" 202 페이지
- "최대값" 202 페이지

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

14 측정

- "최소값" 202 페이지
- "진폭" 202 페이지
- "최고값" 202 페이지
- "최저값" 203 페이지
- "오버슈트" 203 페이지
- "프리슈트" 205 페이지
- "평균" 205 페이지
- "DC RMS" 206 페이지
- "AC RMS" 206 페이지

피크 - 피크

피크 대 피크 값은 최대값과 최소값 사이의 차이입니다. Y 커서는 측정 중인 값 을 표시합니다.

최대값

최대값은 파형 디스플레이에서 가장 큰 값입니다. Y 커서는 측정 중인 값을 표시합니다.

최소값

최소값은 파형 디스플레이에서 가장 작은 값입니다. Y 커서는 측정 중인 값을 표시합니다.

진폭

파형의 진폭은 최고값과 최저값 사이의 차이입니다. Y 커서는 측정 중인 값을 표시합니다.

최고값

파형의 최고값은 파형 상단부의 모드 (가장 일반적인 값)이거나, 모드가 잘 정 의되지 않은 경우에는 최대값과 동일합니다. Y 커서는 측정 중인 값을 표시합니 다.

관련 항목 • "최고값 측정을 위해 펄스를 격리하려면 "203 페이지

최고값 측정을 위해 펄스를 격리하려면

아래 그림에 줌 모드를 사용하여 최고 측정용으로 펄스를 격리하는 방법이 나와 있습니다.

측정이 아래쪽 줌 윈도우에서 실행되도록 측정 윈도우 설정을 변경해야 할 수도 있습니다. " 줌 디스플레이가 적용된 측정 창 " 215 페이지를 참조하십시오.

그림 45 최고값 측정을 위한 영역 격리

최저값

파형의 최저값은 파형 하단부의 모드 (가장 일반적인 값)이거나, 모드가 잘 정 의되지 않은 경우에는 최소값과 동일합니다. Y 커서는 측정 중인 값을 표시합니 다.

오버슈트

오버슈트는 주요 에지 전환에 이어지는 왜곡이며, 진폭의 백분율로 표현됩니다. X 커서는 측정되고 있는 에지 (트리거 참조 포인트에 가장 가까운 에지)를 나 타냅니다.

Rising edge overshoot =
$$\frac{\text{local Maximum} - \text{D Top}}{\text{Amplitude}} \times 100$$

Falling edge overshoot = $\frac{\text{Base} - \text{D local Minimum}}{\text{Amplitude}} \times 100$

그림 46 자동 오버슈트 측정

프리슈트

프리슈트는 주요 에지 전환에 선행하는 왜곡이며, 진폭의 백분율로 표현됩니다. X 커서는 측정되고 있는 에지 (트리거 참조 포인트에 가장 가까운 에지)를 나 타냅니다.

Rising edge preshoot =
$$\frac{\text{local Maximum} - \text{D Top}}{\text{Amplitude}} \times 100$$

Falling edge preshoot = $\frac{\text{Base} - \text{D local Minimum}}{\text{Amplitude}} \times 100$

평균

평균은 파형 샘플의 레벨 합계를 샘플 수로 나눈 것입니다.

Average =
$$\frac{\sum x_i}{n}$$

여기서 x_i는 측정되고 있는 *i*차 포인트에서 값이고, n은 측정 간격에 포함된 포인트 수입니다.

전체 화면 측정 간격 변동 기능은 표시되는 모든 데이터 포인트의 값을 측정합 니다.

N 사이클 측정 간격 변동 기능은 표시되는 신호 주기의 정수에서 값을 측정합니 다. 3 개 미만의 에지가 존재할 경우 측정 결과가 "에지 없음 (No edges)"으로 표시됩니다.

X 커서는 파형의 어떤 간격이 측정되고 있는지를 나타냅니다.

DC RMS

DC RMS 는 1 회 이상의 완전한 주기로 진행되는 파형의 평균 제곱근입니다.

RMS (dc) =
$$\sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

여기서 x_i는 측정되고 있는 *i*차 포인트에서 값이고, n은 측정 간격에 포함된 포인트 수입니다.

전체 화면 측정 간격 변동 기능은 표시되는 모든 데이터 포인트의 값을 측정합 니다.

N 사이클 측정 간격 변동 기능은 표시되는 신호 주기의 정수에서 값을 측정합니 다. 3 개 미만의 에지가 존재할 경우 측정 결과가 "에지 없음 (No edges)"으로 표시됩니다.

X 커서는 측정되고 있는 파형의 간격을 나타냅니다.

AC RMS

AC RMS는 DC 성분이 제거된 파형의 평균 제곱근입니다. 이 측정은 예를 들어 전원 공급기 노이즈 측정 등에 유용합니다.

N 사이클 측정 간격 기능은 표시되는 신호 주기의 정수에서 값을 측정합니다. 3 개 미만의 에지가 존재할 경우 측정 결과가 "에지 없음 (No edges)"으로 표시 됩니다.

X 커서는 측정되고 있는 파형의 간격을 나타냅니다.

전체 화면 (표준 편차) 측정 간격 변동 기능은 DC 성분이 제거된 상태로 전체 화면에 걸쳐 RMS를 측정합니다. 이 기능은 표시된 전압 값의 표준 편차를 보여 줍니다.

측정의 표준 편차는 측정 결과가 평균 값에서 이탈한 양을 나타냅니다. 측정의 평균값은 측정의 통계 평균입니다.

아래 그림은 평균과 표준 편차를 그래픽으로 보여 줍니다. 표준 편차는 그리스 문자 시그마 o로 표시됩니다. 가우시안 분포의 경우, 측정 결과의 68.3% 가 평 균에서 2 시그마 (± 1o) 내에 존재합니다. 측정 결과의 99.7% 는 6 시그마 (± 3o) 내에 존재합니다.

평균은 다음과 같이 계산됩니다.

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

여기서,

- x = 평균
- N = 수집된 측정 횟수
- x_i = i 차 측정 결과

표준 편차는 다음과 같이 계산할 수 있습니다.

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N}}$$

여기서,

- σ = 표준 편차
- N = 수집된 측정 횟수
- x_i = i 차 측정 결과
- x = 평균

측정 14

시간 측정

다음 그림은 시간 측정 포인트를 보여줍니다.

기본 하위, 중간 및 상위 측정 임계값은 최고값과 최저값 사이의 10%, 50%, 90% 입니다. 다른 백분율 임계값과 절대값 임계값 설정에 대한 내용은 " 측정 임계값 " 213 페이지 단원을 참조하십시오.

- "주기" 208 페이지
- "주파수" 209 페이지
- "+ 폭 " 210 페이지
- "- 폭" 210 페이지
- " 듀티 사이클 " 210 페이지
- "상승 시간" 210 페이지
- " 하강 시간 " 210 페이지
- "지연" 211 페이지
- "위상" 212 페이지

주기

주기는 전체 파형 사이클의 시간 주기를 의미합니다. 시간은 극성이 같은 두 연 속 에지의 중간 임계값 포인트 사이에서 측정됩니다. 또한 중간 임계값 교차점 은 런트 펄스를 제거하는 하한 및 상한 임계값 레벨을 통과해야 합니다. X 커서 는 측정되고 있는 파형 부분을 나타냅니다. Y 커서는 중간 임계값 포인트를 나 타냅니다. 주파수

주파수는 1/주기로 정의됩니다. 주기는 극성이 같은 두 연속 에지의 중간 임계 값 교차점 사이의 시간으로 정의됩니다. 또한 중간 임계값 교차점은 런트 펄스 를 제거하는 하한 및 상한 임계값 레벨을 통과해야 합니다. X 커서는 측정되고 있는 파형 부분을 나타냅니다. Y 커서는 중간 임계값 포인트를 나타냅니다.

관련 항목 • "주파수 측정을 위해 이벤트를 격리하려면" 209 페이지

주파수 측정을 위해 이벤트를 격리하려면

아래 그림에 줌 모드를 사용하여 주파수 측정용으로 이벤트를 격리하는 방법이 나와 있습니다.

측정이 아래쪽 줌 윈도우에서 실행되도록 측정 윈도우 설정을 변경해야 할 수도 있습니다. " 줌 디스플레이가 적용된 측정 창 " 215 페이지를 참조하십시오.

파형이 잘리는 경우 측정을 실행하는 것이 불가능할 수도 있습니다.

그림 47 주파수 측정을 위한 이벤트 격리

+ 폭

+ 폭은 상승 에지의 중간 임계값에서 다음 하강 에지의 중간 임계값 사이의 시간 을 의미합니다. X 커서는 측정되고 있는 펄스를 나타냅니다. Y 커서는 중간 임 계값 포인트를 나타냅니다.

- 폭

- 폭은 하강 에지의 중간 임계값에서 다음 상승 에지의 중간 임계값 사이의 시간 을 의미합니다. X 커서는 측정되고 있는 펄스를 나타냅니다. Y 커서는 중간 임 계값 포인트를 나타냅니다.

듀티 사이클

반복적 펄스열의 듀티 사이클은 주기에 대한 양의 펄스 폭의 비율이며 백분율로 표현됩니다. X 커서는 측정되는 시간 주기를 나타냅니다. Y 커서는 중간 임계 값 포인트를 나타냅니다.

+ Duty cycle = $\frac{+ \text{Width}}{\text{Period}} \times 100$ - Duty cycle = $\frac{- \text{Width}}{\text{Period}} \times 100$

상승 시간

신호의 상승 시간은 양으로 진행하는 에지에 대한 하한 임계값의 교차점과 상한 임계값의 교차점 사이의 시간 차이입니다. X 커서는 측정되고 있는 에지를 나타 냅니다. 측정 정확도를 최대화하려면 파형의 전체 상승 에지는 디스플레이에 그 대로 두고 수평 time/div 를 가능한 빠르게 설정하십시오. Y 커서는 하한 및 상 한 임계값 포인트를 나타냅니다.

하강 시간

신호의 하강 시간은 음으로 진행하는 에지에 대한 상한 교차점과 하한 교차점 사이의 시간 차이를 의미합니다. X 커서는 측정되고 있는 에지를 나타냅니다. 측정 정확도를 최대화하려면 파형의 전체 하강 에지는 디스플레이에 그대로 두 고 수평 time/div 를 가능한 빠르게 설정하십시오. Y 커서는 하한 및 상한 임계 값 포인트를 나타냅니다. 지연은 소스 1 의 선택된 에지와 파형의 중간 임계값 포인트에서 타임베이스 기 준점에 가장 가까운 소스 2 의 선택된 에지 간 시간 차이를 측정합니다. 음의 지 연 값은 소스 2 의 선택된 에지 이후에 소스 1 의 선택된 에지가 발생했음을 나 타냅니다.

- 1 [Meas] 측정 키를 눌러 측정 메뉴를 표시합니다.
- 2 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 첫 번째 아날로그 채널 소스 를 선택합니다.
- 3 유형: 소프트키를 누른 다음 엔트리 노브를 돌려 **지연**을 선택합니다.
- 4 설정 소프트키를 누르고 두 번째 아날로그 채널 소스와 지연 측정에 사용할 기울기를 선택합니다.

기본 지연 설정은 채널 1의 상승 에지에서 채널 2의 상승 에지까지 측정하는 것입니다.

- 5 이제 🚳 뒤로 / 위로 키를 눌러 측정 메뉴로 돌아갑니다.
- 6 측정 추가 소프트키를 눌러 측정을 수행합니다.

아래는 채널 1 의 상승 에지와 채널 2 의 상승 에지 사이의 지연 측정을 보여주 는 예입니다. 14 측정

위상

위상은 소스 1 에서 소스 2 까지 계산된 위상 편이이며, 도 단위로 표현됩니다. 음의 위상 편이 값은 소스 2 의 상승 에지 이후에 소스 1 의 상승 에지가 발생했 음을 나타냅니다.

- 1 [Meas](측정) 키를 눌러 측정 메뉴가 표시되도록 합니다.
- 2 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 첫 번째 아날로그 채널 소스 를 선택합니다.
- 3 유형 소프트키를 누른 다음, 엔트리 노브를 돌려 지연을 선택합니다.

4 설정 소프트키를 누르고 위상 측정에 사용할 두 번째 아날로그 채널 소스를 선택합니다.

기본 위상 설정은 채널 1 에서 채널 2 까지 측정하는 것입니다.

5 🚯 뒤로 / 위로 키를 눌러 측정 메뉴로 돌아갑니다.

6 추가 측정 소프트키를 눌러 측정을 실행합니다.

아래는 채널 1 과 채널 1 에 대한 산술 d/dt 함수 사이의 위상 측정을 보여 주는 예입니다.

측정 임계값

측정 임계값 설정은 아날로그 채널 또는 산술 파형에서 측정이 실행될 수직 레 벨을 정의합니다.

기본 임계값을 변경하면 측정 결과가 변경될 수 있습니다.

기본 하위, 중간 및 상위 임계값은 최고값과 최저값 사이 값의 10%, 50%, 90% 입니다. 이 임계값 정의를 기본값에서 변경하면 평균, 지연, 듀티 사이클, 하 강 시간, 주파수, 오버슈트, 주기, 위상, 프리슈트, 상승 시간, + 폭, - 폭 측 정에서 반환되는 결과가 변경될 수 있습니다.

1 측정 메뉴에서 설정 소프트키를 누른 다음, 임계값 소프트키를 눌러 아날로 그 채널 측정 임계값을 설정합니다.

또한 [분석] > 기능을 누른 다음 측정 임계값을 선택하여 측정 임계값 메뉴 를 열 수도 있습니다.

2 소스 소프트키를 눌러 측정 임계값을 변경할 아날로그 채널 또는 산술 파형 소스를 선택합니다.

각 아날로그 채널과 산술 파형에 고유의 임계값을 할당할 수 있습니다.

- 3 종류 소프트키를 눌러 측정 임계값을 %(최고값 및 최저값에 대한 백분율) 또는 절대(절대값)로 설정할 수 있습니다.
 - 백분율 임계값은 5% ~ 95% 로 설정할 수 있습니다.
 - 각 채널의 절대 임계값 단위는 채널 프로브 메뉴에서 설정합니다.
 - 소스를 산술: f(t) 로 설정한 경우, 임계값 종류를 백분율로만 설정할 수 있습니다.

절대 임계값 힌트

- 절대 임계값은 채널 스케일링, 프로브 감쇠 및 프로브 단위에 따라 달라집니다. 절대 임계값을 설정하기 전에 항상 위 값을 먼저 설정하십시오.
- 최소 및 최대 임계값은 화면상의 값으로 제한됩니다.
- 절대 임계값 중 어느 하나가 최소 또는 최대 파형 값에서 벗어날 경우 측정이 무효가 될 수 있습니다.
- 4 낮음 소프트키를 누른 다음, 엔트리 노브를 돌려 하위 측정 임계값을 설정합니다.

조언

하위 값을 설정된 중간 값보다 크게 설정하면 중간 값이 자동으로 하위 값보 다 크게 조정됩니다. 기본 하위 임계값은 10% 또는 800 mV 입니다.

임계값 종류가 % 로 설정된 경우, 하위 임계값을 5%~ 93% 로 설정할 수 있 습니다.

5 중간 소프트키를 누른 다음, 엔트리 노브를 돌려 중간 측정 임계값을 설정합 니다.

중간 값은 하위 및 상위로 설정된 값에 따라 그 범위가 결정됩니다. 기본 중 간 임계값은 50% 또는 1.20 V 입니다.

- 임계값 종류가 % 로 설정된 경우, 중간 임계값을 6% ~ 94% 로 설정할 수 있습니다.
- 6 높음 소프트키를 누른 다음, 엔트리 노브를 돌려 상위 측정 임계값을 설정합니다.

상위 값을 설정된 중간 값보다 작게 설정하면 중간 값이 자동으로 상위 값보 다 작게 조정됩니다. 기본 상위 임계값은 90% 또는 1.50 V 입니다.

임계값 종류가 % 로 설정된 경우, 상위 임계값을 7% ~ 95% 로 설정할 수 있습니다.

줌 디스플레이가 적용된 측정 창

축소 / 확대된 타임 베이스가 표시될 때, 디스플레이의 메인 윈도우 부분 또는 디스플레이의 줌 윈도우 부분에서 측정을 실행할 것인지 선택할 수 있습니다.

- 1 [Meas](측정) 키를 누릅니다.
- 2 측정 메뉴에서 설정 소프트키를 누릅니다.
- 3 측정 설정 메뉴에서 측정 윈도우 소프트키를 누른 다음 엔트리 노브를 돌려 다음 항목을 선택합니다.
 - 자동 선택 아래쪽 줌 윈도우에서 측정이 시도되며, 측정이 불가능할 경우 위쪽 메인 윈도우가 사용됩니다.
 - 메인 위쪽 메인 윈도우가 측정 윈도우가 됩니다.
 - 줌 아래쪽 줌 윈도우가 측정 윈도우가 됩니다.

14 측정
Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

15 마스크 테스트

" 황금률 " 파형에서 마스크를 생성하려면 (자동 마스크) / 217 마스크 테스트 설정 옵션 / 220 마스크 통계 / 222 마스크 파일을 수동으로 수정하려면 / 223 마스크 파일 구성 / 227

마스크 테스트는 특정 파라미터 집합에 대한 파형 호환성을 확인하는 한 가지 방법입니다. 마스크는 선택된 파라미터와 호환하기 위해 유지해야 하는 파형의 오실로스코프 디스플레이 영역을 정의합니다. 마스크에 대한 호환성은 디스플 레이를 통해 포인트 - 바이 - 포인트 형식으로 확인됩니다. 마스크 테스트는 표 시된 아날로그 채널에서만 작동하며 표시되지 않은 채널에서는 작동하지 않습 니다.

마스크 테스트는 라이센스가 활성화된 기능입니다.

" 황금률 " 파형에서 마스크를 생성하려면 (자동 마스크)

황금률 파형은 선택한 모든 파라미터를 만족하며, 다른 모든 파형과 비교할 수 있는 파형입니다.

- 1 황금률 파형을 표시하도록 오실로스코프를 구성합니다.
- 2 [Analyze](분석) 키를 누릅니다.
- 3 기능을 누른 다음, 마스크 테스트를 선택합니다.
- 4 다시 기능을 누르면 마스크 테스트가 활성화됩니다.

- 5 자동 마스크를 누릅니다.
- 6 자동 마스크 메뉴에서 소스 소프트키를 눌러 원하는 아날로그 채널이 선택되 었는지 확인할 수 있습니다.

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

- 7 마스크의 수평 허용 오차 (± Y) 와 수직 허용 오차 (± X) 를 조정합니다. 허용 오차는 눈금 구획 단위 또는 절대 단위 (전압 또는 초) 로 조정 가능하며, 단위 소프트키를 사용하여 선택할 수 있습니다.
- 8 마스크 만들기 소프트키를 누릅니다.

마스크가 생성되며 테스트가 시작됩니다.

마스크 만들기 소프트키를 누를 때마다 이전 마스크가 삭제되고 새 마스크가 생성됩니다.

9 마스크를 삭제하고 마스크 테스트를 종료하려면 ● 뒤로 / 위로 키를 눌러 마스크 테스트 메뉴로 돌아간 다음, 마스크 삭제 소프트키를 누르십시오.

마스크 테스트가 활성화된 상태에서 무한 지속성 디스플레이 모드 ("지속성을 설정 또는 지우려면 "125 페이지 참조)를 "켜면 "계속 그대로 유지됩니다. 마 스크 테스트가 활성화된 상태에서 무한 지속성을 "끄면 "마스크 테스트가 켜질 때 같이 켜진 다음, 마스크 테스트가 꺼지면 무한 지속성도 꺼집니다.

마스크 설정 문 마스크 만들기를 누르고 마스크가 전체 화면에 표시되면 자동 마스크 메뉴에서 제 해결 ± Y 및 ± X 설정을 확인하십시오. 위 항목을 0 으로 설정하면 결과 마스크가 파형 주변에 극히 조밀하게 생성됩니다.

> **마스크 만들기**를 눌러도 마스크가 생성되지 않으면 ± Y 및 ± X 설정을 확인하 십시오. 위 항목을 너무 크게 설정하면 마스크가 보이지 않을 수 있습니다.

마스크 테스트 설정 옵션

마스크 테스트 메뉴에서 설정 소프트키를 눌러 마스크 설정 메뉴를 엽니다.

실행 기간	실행 기간 소프트키를 사용하여 테스트의 종료 조건을 지정할 수 있 습니다 .
	 계속 — 오실로스코프가 지속적으로 실행됩니다. 하지만 오류가 발생하면 오류 종류 소프트키를 사용하여 지정한 작업이 실행됩 니다.
	 최소 테스트 횟수 — 이 옵션을 선택한 다음 테스트 횟수 소프트 키를 사용하여 오실로스코프의 트리거 횟수를 선택하고, 파형을 표시하여 마스크와 비교할 수 있습니다. 지정한 횟수의 테스트가 완료되면 오실로스코프가 중지됩니다. 지정한 최소 테스트 횟수 가 초과될 수도 있습니다. 오류가 발생하면 오류 종류 소프트키 를 사용하여 지정한 작업이 실행됩니다. 실제 완료된 테스트 횟 수가 소프트키 위에 표시됩니다.
	 최소 시간 — 이 옵션을 선택한 다음 테스트 시간 소프트키를 사용하여 오실로스코프를 얼마 동안 실행할 것인지 선택할 수 있습니다. 선택한 시간이 지나면 오실로스코프가 중지됩니다. 지정한 시간이 초과될 수도 있습니다. 오류가 발생하면 오류 종류 소프트키를 사용하여 지정한 작업이 실행됩니다. 실제 테스트 시간이 소프트키 위에 표시됩니다.
	 최소 시그마 — 이 옵션을 선택한 다음 시그마 소프트키를 사용하여 최소 시그마를 선택할 수 있습니다. 파형이 충분히 테스트되어 최소 테스트 시그마가 달성될 때까지 마스크 테스트가 실행됩니다. (오류가 발생하면 오류 종류 소프트키를 사용하여 지정한 작업이 실행됩니다.) 이는 프로세스 시그마 (테스트당 오류 수에 결부됨) 와는 다른 테스트 시그마 (테스트된 특정 파형 수에서 결 함이 없다고 가정한 경우 달성 가능한 최대 프로세스 시그마)라는 점을 참고하십시오. 시그마 값을 작게 선택할 경우, 시그마 값이 선택한 값을 초과할 수 있습니다. 실제 시그마가 표시됩니다.

오류 종류	오류 종류 설정은 입력 파형이 마스크를 준수하지 않을 때 수행할 작 업을 지정합니다 . 이 설정은 실행 기간 설정보다 우선적으로 적용됩 니다 .
	 정지 — 첫 번째 오류가 감지될 때 (마스크를 준수하지 않는 첫 번째 파형에서) 오실로스코프가 정지됩니다. 이 설정은 최소 테스트 횟수 및 최소 시간 설정에 우선합니다.
	 저장 — 오류가 감지되면 오실로스코프에서 화면 이미지를 저장 합니다. 저장 메뉴 ([저장 / 호출] > 저장 누름)에서 이미지 형 식 (*.bmp 또는 *.png), 대상 (USB 저장 장치 내), 파일 이름 (자 동 증가 적용 가능)을 선택합니다. 오류가 너무 자주 발생하여 오실로스코프가 계속 이미지 저장만 하는 경우 [Stop](정지) 키 를 눌러 수집을 중지하십시오.
	 인쇄 — 오류가 감지되면 오실로스코프에서 화면 이미지를 인쇄 합니다. 이 옵션은 "오실로스코프 화면을 인쇄하려면 "259 페이 지의 설명처럼 프린터를 연결한 경우에만 사용할 수 있습니다.
	 측정 — 마스크 위반이 포함된 파형에만 측정 (오실로스코프에서 지원하는 경우 측정 통계도 포함)이 실행됩니다.통과되는 파형 은 측정에 영향을 주지 않습니다. 수집 모드를 평균으로 설정한 경우 이 모드를 사용할 수 없습니다.
	인쇄 또는 저장을 각각 선택할 수는 있지만 동시에 같이 선택할 수는 없습니다. 다른 모든 작업은 동시에 선택할 수 있습니다. 예를 들어 , 정지와 측정을 모두 선택하여 첫 번째 오류가 발생하면 오실로스코 프에서 이를 측정하고 중지하도록 할 수 있습니다.
	또한 마스크 파일 오류가 있을 경우 후면 패널 TRIG OUT BNC 커넥 터로 신호를 출력할 수도 있습니다 . " 후면 패널 TRIG OUT 소스 설 정 " 274 페이지를 참조하십시오 .
소스 고정	소스 고정 소프트키를 사용하여 소스 고정을 켜면, 파형을 이동할 때마다 소스와 일치하도록 마스크가 조정됩니다. 예를 들어, 수평 타임베이스나 수직 게인을 변경하면 마스크가 새로운 설정에 맞게 조정됩니다.
	소스 고정을 끄면 , 수평 또는 수직 설정을 변경할 때 마스크가 조정 되지 않습니다 .
소스	소스 채널을 변경해도 마스크는 지워지지 않습니다 . 마스크는 마스 크가 할당될 채널의 수직 게인과 오프셋 설정에 맞게 재조정됩니다. 선택한 소스 채널에 새로운 마스크를 만들려면, 메뉴 계층을 거슬러 올라간 다음 자동 마스크 을 누르고 마스크 생성 을 누르십시오 .
	마스크 설정 메뉴에 있는 소스 소프트키는 자동 마스크 메뉴에 있는 소스 소프트키와 같습니다 .

모두 테스트	이 옵션을 활성화하면 표시되는 모든 아날로그 채널이 마스크 테스
	트에 포함됩니다 . 비활성화하면 선택한 소스 채널만 테스트에 포함 됩니다 .

마스크 통계

마스크 테스트 메뉴에서 통계 소프트키를 눌러 마스크 통계 메뉴를 엽니다.

마스크 테스트 15

통계 표시	통계 표시를 활성화하면 다음 정보가 표시됩니다 .		
	• 현재 마스크, 마스크 이름, 채널 번호, 날짜 및 시간		
	• 테스트 수 (실행된 총 마스크 테스트 수)		
	• 상태 (통과,실패 또는 테스트되지 않음)		
	 누적 테스트 시간 (시간 단위, 분 단위, 초 단위, 1/10 초 단위) 		
	각 아날로그 채널에 대해 다음과 같은 정보가 표시됩니다 .		
	• 오류 수 (마스크에서 벗어난 신호 편위 수집 횟수)		
	• 오류율(오류 발생 백분율)		
	 시그마 (프로세스 시그마 대 달성 가능한 최대 시그마의 비율로, 테스트된 파형 수를 기준으로 함) 		
통계 재설정	통계는 다음과 같은 경우에도 재설정됩니다 .		
	• 마스크 테스트를 끈 후에 다시 켤 때		
	• 마스크 삭제 소프트키를 누를 때		
	• 자동 마스크가 생성될 때		
	또한 누적된 시간 카운터는 수집이 중단된 후 오실로스코프를 실행 할 때마다 재설정됩니다 .		
투명	투명 모드를 활성화하면 배경이 없는 화면에 측정 값과 통계를 기록 할 수 있습니다. 투명 모드를 비활성화하면 위 정보가 회색 배경에 표시됩니다. 투명 설정은 마스크 테스트 통계, 측정 통계, 기준 파 형 정보 디스플레이에 영향을 줍니다.		
표시 지움	오실로스코프 디스플레이에서 수집 데이터를 삭제합니다 .		

마스크 파일을 수동으로 수정하려면

자동 마스크 기능을 사용하여 생성한 마스크 파일을 수동으로 수정할 수 있습니 다.

- 1 ""황금률 " 파형에서 마스크를 생성하려면 (자동 마스크)" 217 페이지의 1 ~ 7 단계를 따르십시오. 마스크를 만든 후에 삭제하지 마십시오.
- 2 오실로스코프에 USB 대용량 저장 장치를 연결합니다.
- 3 [Save/Recall](저장/호출) 키를 누릅니다.
- 4 저장 소프트키를 누릅니다.
- 5 형식 소프트키를 누르고 마스크를 선택합니다.

15 마스크 테스트

- 6 두 번째 소프트키를 누르고 USB 대용량 저장 장치에서 대상 폴더를 선택합니다.
- **7 저장하려면 누름** 소프트키를 누릅니다. 그러면 마스크를 설명하는 ASCII 텍 스트 파일이 생성됩니다.
- 8 USB 대용량 저장 장치를 분리하고 PC 에 연결합니다.
- 9 텍스트 편집기 (워드패드 등)를 사용하여 만든 .msk 파일을 엽니다.10파일을 편집하고 저장한 후 닫습니다.

마스크 파일에는 다음과 같은 섹션이 포함되어 있습니다.

- 마스크 파일 식별자
- 마스크 명칭
- 마스크 위반 구역
- 오실로스코프 설정 정보

마스크 파일 식 마스크 파일 식별자는 MASK_FILE_548XX 입니다.

별자

마스크 명칭 마스크 명칭은 ASCII 문자로 된 문자열입니다 . 예 : autoMask CH1 OCT 03 09:40:26 2008

마스크 파일의 명칭에 키워드 "autoMask" 가 포함되어 있을 경우, 해당 마스크 의 에지는 정의상 통과입니다. 그렇지 않으면 마스크 에지가 오류로 정의됩니다 마스크 위반 구

마스크마다 최대 8 개의 구역을 정의할 수 있습니다. 각 구역에 1 ~ 8 의 번호를 매길 수 있으며, .msk 파일에서 어떠한 순서로도 나올 수 있습니다. 구역의 번 호 지정은 상단에서 하단으로, 왼쪽에서 오른쪽으로 진행되어야 합니다.

자동 마스크 파일에는 디스플레이 상단에 "정착된 "구역과 하단에 "정착된" 구역의 두 가지 특별한 구역이 포함되어 있습니다. 상단 구역은 최초 포인트와 마지막 포인트에서 y 값 "MAX" 로 표시됩니다. 하단 구역은 최초 포인트와 마 지막 포인트에서 y 값 "MIN" 으로 표시됩니다.

상단 구역은 파일 내에서 가장 낮은 번호의 구역이어야 합니다. 하단 구역은 파 일 내에서 가장 높은 번호의 구역이어야 합니다.

구역 번호 1 은 상단 마스크 구역입니다. 구역 1 의 버텍스는 라인에 이어지는 포인트를 설명하며, 이 라인은 마스크 상단 부분의 하단 에지입니다.

마찬가지로, 구역 2 의 버텍스는 마스크 하단 부분의 상단을 형성하는 라인을 설명합니다.

마스크 파일의 버텍스는 평준화되어 있습니다. 값이 평준화되는 방식은 다음 4 개의 파라미터로 정의됩니다.

- X1
- ΔX
- Y1

• Y2

이러한 4 개의 파라미터는 마스크 파일의 오실로스코프 설정 부분에 정의되어 있습니다.

Y 값 (일반적으로 전압)은 다음 공식을 사용하여 파일 내에서 평준화됩니다.

 $Y_{norm} = (Y - Y1)/\Delta Y$

여기서 ΔY = Y2 - Y1

마스크 내에서 평준화된 Y 값을 전압으로 변환하려면 :

 $Y = (Y_{norm} * \Delta Y) + Y1$

여기서 ΔY = Y2 - Y1

X값(일반적으로 시간)은 다음 공식을 사용하여 파일 내에서 평준화됩니다.

 $X_{norm} = (X - X1)/\Delta X$

평준화된 X 값을 시간으로 변환하려면 :

 $X = (X_{norm} * \Delta X) + X1$

오실로스코프 키워드 "setup" 및 "end_setup"(한 라인에 단독으로 표시됨)이 마스크 파일의 설정 정보 오실로스코프 설정 구역 시작과 끝을 정의합니다. 오실로스코프 설정 정보에는 마스크 파일이 로드될 때 오실로스코프에서 실행되는 원격 프로그래밍 언어 명 령이 포함되어 있습니다.

이 섹션에는 올바른 원격 프로그래밍 명령을 입력할 수 있습니다.

마스크 스케일은 평준화 벡터의 해석 방법을 제어합니다. 이는 또한 마스크가 디스플레이에 표시되는 방식을 제어합니다. 마스크 스케일을 제어하는 원격 프 로그래밍 명령은 다음과 같습니다.

:MTES:SCAL:BIND 0 :MTES:SCAL:X1 -400.000E-06 :MTES:SCAL:XDEL +800.000E-06 :MTES:SCAL:Y1 +359.000E-03 :MTES:SCAL:Y2 +2.35900E+00

마스크 파일 구성

다음 마스크는 8 개의 마스크 구역 모두를 사용합니다. 마스크 파일을 만들 때 가장 까다로운 부분은 시간 및 전압 값에서 X 와 Y 값을 평준화하는 것입니다. 이 예에서는 전압과 시간을 마스크 파일 내의 평준화된 X 및 Y 값으로 손쉽게 변 환하는 방법을 소개합니다.

다음 마스크 파일은 위에 표시된 마스크를 생성합니다. MASK_FILE_548XX

"All Regions"

/* Region Number */ 1 /* Number of vertices */ 4 -12.50, MAX -10.00, 1.750 12.50, MAX /* Region Number */ 2 /* Number of vertices */ 5 -10.00, 1.000 -12.50, 0.500 -15.00, 1.500 -12.50, 1.500 /* Region Number */ 3

/* Number of vertices */ 6

-05.00, 1.000 -02.50, 0.500 02.50, 0.500 05.00, 1.000 02.50, 1.500 -02.50, 1.500 /* Region Number */ 4 /* Number of vertices */ 5 10.00, 1.000 12.50, 0.500 15.00, 0.500 15.00, 1.500 12.50, 1.500 /* Region Number */ 5 /* Number of vertices */ 5 -10.00, -1.000 -12.50, -0.500 -15.00, -0.500 -15.00, -1.500 -12.50, -1.500 /* Region Number */ 6 /* Number of vertices */ 6 -05.00, -1.000 -02.50, -0.500 02.50, -0.500 05.00, -1.000 02.50, -1.500 -02.50, -1.500 /* Region Number */ 7 /* Number of vertices */ 5 10.00, -1.000 12.50. -0.500 15.00, -0.500 15.00, -1.500 12.50. -1.500 /* Region Number */ 8 /* Number of vertices */ 4 -12.50, MIN -10.00, -1.750 10.00, -1.750 12.50, MIN setup :MTES:ENAB 1 :CHAN1:RANG +4.00E+00;OFFS +0.0E+00;COUP DC;IMP ONEM:DISP 1;BWL 0;INV 0 :CHAN1:LAB "1";UNIT VOLT;PROB +1.0E+00;PROB:SKEW +0.0E+00;STYP SING :CHAN2:RANG +16.0E+00;OFFS +1.62400E+00;COUP DC;IMP FIFT;DISP 0;BWL 0;INV 0 :CHAN2:LAB "2";UNIT VOLT;PROB +1.0E+00;PROB:SKEW +0.0E+00;STYP SING :CHAN3:RANG +40.0E+00;OFFS +0.0E+00;COUP DC;IMP ONEM:DISP 0;BWL 0;INV 0 :CHAN3:LAB "3";UNIT VOLT;PROB +1.0E+00;PROB:SKEW +0.0E+00;STYP SING :CHAN4:RANG +40.0E+00;OFFS +0.0E+00;COUP DC;IMP ONEM;DISP 0;BWL 0;INV 0

Kevsight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

:CHAN4:LAB "4";UNIT VOLT;PROB +1.0E+00;PROB:SKEW +0.0E+00;STYP SING :EXT:BWL 0;IMP ONEM;RANG +5E+00;UNIT VOLT;PROB +1.0E+00;PROB:STYP SING

:TIM:MODE MAIN;REF CENT;MAIN:RANG +50.00E-09:POS +0.0E+00 :TRIG:MODE EDGE;SWE AUTO;NREJ 0;HFR 0;HOLD +60E-09

:TRIG:EDGE:SOUR CHAN1;LEV -75.00E-03;SLOP POS;REJ OFF;COUP DC :ACQ:MODE RTIM:TYPE NORM;COMP 100;COUNT 8;SEGM:COUN 2

228

:DISP:LAB 0:CONN 1;PERS MIN;SOUR PMEM1 :HARD:APR "":AREA SCR;FACT 0;FFE 0;INKS 1;PAL NONE;LAY PORT :SAVE:FIL "mask_0" :SAVE:IMAG:AREA GRAT;FACT 0;FORM NONE:INKS 0;PAL COL :SAVE:WAV:FORM NONE :MTES:SOUR CHAN1;ENAB 1;LOCK 1 :MTES:AMAS:SOUR CHAN1;UNIT DIV;XDEL +3.00000000E-001;YDEL +2.0000000E-001 :MTES:SCAL:BIND 0:X1 +0.0E+00:XDEL +1.0000E-09;Y1 +0.0E+00;Y2 +1.00000E+00 :MTES:RMOD FOR;RMOD:TIME +1E+00;WAV 1000;SIGM +6.0E+00 :MTES:RMOD:FACT:STOP 0;PRIN 0;SAVE 0 end_setup

마스크 파일에서 모든 구역 정의는 한 줄씩 비워 구분해야 합니다.

마스크 구역은 다수의 (x,y) 좌표 버텍스로 정의됩니다 (일반 x,y 그래프에서와 같음). "MAX" 의 "y" 값은 눈금의 맨 위를 지정하며 "MIN" 의 "y" 값은 눈금의 맨 아래를 지정합니다.

참 고

마스크 영역에 1000 개 이상의 버텍스가 있으면 처음 1000 개의 버텍스만 처리 됩니다.

마스크 x,y 그래프는 :MTESt:SCALe 설정 명령을 통해 오실로스코프 눈금과 연관됩니다.

오실로스코프의 눈금에는 시간 기준 위치 (화면의 왼쪽, 중앙 또는 오른쪽에 있음)와 기준에 대한 트리 (t=0) 위치 / 지연 값이 표시됩니다. 또한 수직 접지 OV 기준 (화면 중심 기준의 오프셋) 위치도 눈금에 표시됩니다.

X1 및 Y1 설정 명령을 통해 마스크 구역의 x,y 그래프 원점이 오실로스코프 눈 금의 t=0 및 V=0 기준 위치와 연결되며 XDELta 및 Y2 설정 명령을 통해서는 그래프의 x 및 y 단위의 크기를 지정할 수 있습니다.

- X1 설정 명령은 x,y 그래프의 x 원점에 대한 시간 위치를 지정합니다.
- Y1 설정 명령은 x,y 그래프의 y 원점에 대한 수직 위치를 지정합니다.
- XDELta 설정 명령은 각 x 단위와 연관되는 시간을 지정합니다.
- Y2 설정 명령은 x,y 그래프의 y=1 값에 대한 수직 위치를 지정합니다 (따라 서 Y2 Y1 = YDELta 값임).

예 :

 트리거 위치가 10ns(중앙 화면 기준 이전) 이며 접지 기준 (오프셋) 이 2V(화면 중앙 아래) 인 눈금에서, 마스크 구역 x,y 그래프의 원점을 중앙 화면에 배치하려면 X1 = 10ns, Y1 = 2V 로 설정합니다. 15 마스크 테스트

- XDELta 파라미터가 5ns 로 설정되고 Y2 가 4V 로 설정되면 버텍스가 (-1, 1), (1, 1), (1, -1) 및 (-1, -1) 인 마스크 구역이 5ns 에서 15ns 로, 0V 에서 4V 로 이동됩니다.
- X1 = 0 및 Y1 = 0 으로 설정하여 마스크 구역 x, y 그래프의 원점을 t=0 및 V=0 위치로 이동하면, 동일한 버텍스로 -5ns 에서 5ns 로, -2V 에서 2V 로 이동되는 구역이 정의됩니다.
- 참 고 마스크에는 최대 8 개의 구역이 사용될 수 있지만 제공된 수직 열에서는 4 개 구 역만 정의할 수 있습니다 . 수직 열에 4 개 구역이 있는 경우 한 구역은 맨 위에 고정되고 (MAX y 값 사용) 한 구역은 맨 아래에 고정되어 (MIN y 값 사용) 있어 야 합니다 .

마스크 테스트의 실행 방법

InfiniiVision 오실로스코프는 파형 표시 영역이 200 x 640 인 데이터베이스를 생성하여 마스크 테스트를 시작합니다. 어레이 내의 각 위치는 위반 또는 통과 영역으로 지정됩니다. 위반 영역 내에서 파형의 데이터 포인트가 발생할 때마다 오류 메시지가 기록됩니다. 모두 테스트를 선택한 경우, 각각의 수집에서 모든 활성 아날로그 채널이 마스크 데이터베이스에 대해 테스트됩니다. 채널당 20 억 개 이상의 오류를 기록할 수 있습니다. 테스트되는 수집 횟수 또한 기록되며 "테스트 횟수 " 로 표시됩니다.

마스크 파일을 사용하면 200 X 640 데이터베이스 이상의 분해능을 사용할 수 있습니다. 화면에 표시할 수 있도록 마스크 파일 데이터를 줄이는 데이터 양자 화가 일부 일어납니다. Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

16 디지털 전압계

디지털 전압계(DVM) 분석 기능은 모든 아날로그 채널을 사용하여 세 자릿수의 전압과 다섯 자릿수의 주파수 측정값을 나타냅니다. DVM 측정은 오실로스코 프의 수집 시스템에서 비동기식으로 실행되며, 항상 데이터를 수집합니다.

DVM 디스플레이는 디지털 전압계와 마찬가지로 7 개의 세그먼트로 표시됩니다.여기에는 선택한 모드와 단위가 표시됩니다. 단위는 채널의 프로브 메뉴에 있는 **단위** 소프트키를 사용하여 선택합니다.

[Analyze](분석) 키를 누르면 DVM 디스플레이는 눈금에 스케일과 주파수 카 운터 값도 함께 표시합니다. DVM 스케일은 채널의 수직 스케일과 기준 레벨에 의해 결정됩니다. 스케일의 파란색 삼각형 포인터는 가장 최근의 측정을 나타냅 니다. 그 위에 있는 흰색 막대는 마지막 3 초 동안의 측정 극값을 나타냅니다.

DVM 은 RMS 신호 주파수가 20 Hz 와 100 kHz 사이일 때 DVM 은 정확한 RMS 를 측정합니다. 신호 주파수가 이 범위를 벗어나면 "<BW 제한?" 또는 ">BW 제한?" 이 DVM 디스플레이에 표시되어 RMS 측정 결과가 잘못되었음을 경고합니다.

디지털 전압계 사용 방법:

- 1 [Analyze](분석) 키를 누릅니다.
- 2 기능을 누른 다음 디지털 전압계를 선택합니다.
- 3 다시 기능을 눌러 DVM 측정을 활성화합니다.
- 4 소스 소프트키를 누르고 엔트리 노브를 돌려 디지털 전압계 (DVM) 측정이 실행되는 아날로그 채널을 선택합니다.

DVM 측정을 실시하기 위해서는 선택된 채널이 켜져 (파형 표시) 있어서는 안 됩니다.

- 5 모드 소프트키를 누르고 엔트리 노브를 돌려 디지털 전압계 (DVM) 모드를 선택합니다.
 - AC RMS DC 성분이 제거된 수집 데이터의 평균 제곱근 값을 표시합니다.
 - DC 수집 데이터의 DC 값을 표시합니다.
 - DC RMS 수집 데이터의 평균 제곱근 값을 표시합니다.

- 주파수 주파수 카운터 측정을 표시합니다.
- 6 투명을 눌러 DVM 디스플레이에 투명 / 음영 처리 배경을 전환합니다.
- 7 선택한 소스 채널을 오실로스코프 트리거링에 사용하지 않을 경우 자동 범위 를 눌러 DVM 채널의 수직 스케일, 수직 (접지 레벨)위치, (카운터 주파수 측정에 사용되는)트리거 (임계값 전압)레벨을 활성화하거나 비활성화합니 다.

활성화하면 **자동 범위** 기능이 채널의 수직 스케일과 위치 노브에 시도된 조정 작업을 무시합니다.

비활성화하면 수직 스케일과 위치 노브를 정상적으로 사용할 수 있습니다.

16 디지털 전압계

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

17 파형 발생기

발생되는 파형 유형 및 설정을 선택하려면 / 235 파형 발생기 동기 펄스를 출력하려면 / 238 예상 출력 로드를 지정하려면 / 238 파형 발생기 로직 사전 설정을 사용하려면 / 239 파형 발생기 출력에 노이즈를 추가하려면 / 240 파형 발생기 출력에 변조를 추가하려면 / 240 파형 발생기 기본값을 복원하려면 / 245

오실로스코프에는 파형 발생기가 내장되어 있으며, 옵션 WGN 또는 DSOX2WAVEGEN 업그레이드를 통해 활성화됩니다. 파형 발생기를 사용하면 오실로스코프로 회로를 테스트할 때 입력 신호를 손쉽게 제공할 수 있습니다.

파형 발생기 설정은 오실로스코프 설정과 함께 저장 및 호출할 수 있습니다. 18 장, "저장 / 호출 (설정 , 화면 , 데이터)," 페이지 시작 247 쪽을 참조하십시오.

발생되는 파형 유형 및 설정을 선택하려면

1 파형 발생기 메뉴를 열고 전면 패널 Gen Out BNC 의 파형 발생기 출력을 활 성화 또는 비활성화하려면 [Wave Gen](파형 발생기) 키를 누르십시오.

파형 발생기 출력이 활성화되면 [Wave Gen](파형 발생기) 키에 불이 켜집 니다. 파형 발생기 출력이 비활성화되면 [Wave Gen](파형 발생기) 키에 불 이 꺼집니다.

파형 발생기 출력은 처음으로 계측기를 켰을 때 항상 비활성화 상태입니다.

Gen Out BNC 에 과도한 전압이 인가되는 경우에도 파형 발생기 출력이 자동 으로 비활성화됩니다.

과부하에 대응하기 위해서는 약 10ms 의 과부하 보호 회로가 필요합니다. ~ 40V 보다 큰 전압을 즉시 적용하면 보호 회로가 응답하기 전에 파형 발생 기 회로가 손상될 수 있습니다.

2 파형 발생기 메뉴에서 **파형** 소프트키를 누른 다음, 엔트리 노브를 돌려 파형 유형을 선택합니다.

3 선택한 파형 유형에 따라 나머지 소프트키와 엔트리 노브를 사용하여 파형의 특성을 설정할 수 있습니다.

파형 유형	특성
사인	주파수 / 주파수 미세 / 주기 / 주기 미세 , 진폭 / 상위 레벨 , 오프셋 / 하 위 레벨 소프트키를 사용하여 사인 신호 파라미터를 설정합니다 . 주파수는 100 mHz ~ 20 MHz 로 조정할 수 있습니다 .
사각	주파수 / 주파수 미세 / 주기 / 주기 미세 , 진폭 / 상위 레벨 , 오프셋 / 하 위 레벨 , 듀티 사이클 소프트키를 사용하여 사각파 신호 파라미터를 설 정합니다 .
	주파수는 100 mHz ~ 10 MHz 로 조정할 수 있습니다 .
	듀티 사이클은 20% ~ 80% 로 조정할 수 있습니다 .
램프	주파수 / 주파수 미세 / 주기 / 주기 미세 , 진폭 / 상위 레벨 , 오프셋 / 하 위 레벨 , 대칭 소프트키를 사용하여 램프 신호 파라미터를 설정합니다
	주파수는 100 mHz ~ 100 KHz 로 조정할 수 있습니다 .
	대칭이란 램프 파형이 상승하는 사이클당 시간의 양을 의미하며 , 0% ~ 100% 로 조정할 수 있습니다 .
펄스	주파수 / 주파수 미세 / 주기 / 주기 미세 , 진폭 / 상위 레벨 , 오프셋 / 하 위 레벨 , 폭 / 폭 미세 소프트키를 사용하여 펄스 신호 파라미터를 설정 합니다 .
	주파수는 100 mHz ~ 10 MHz 로 조정할 수 있습니다 .
	펄스 폭은 20 ns 에서 주기 - 20 ns 까지 조정할 수 있습니다 .
DC	오프셋 소프트키를 사용하여 DC 레벨을 설정할 수 있습니다 .
노이즈	진폭 / 상위 레벨 및 오프셋 / 하위 레벨 을 사용하여 노이즈 신호 파라미 터를 설정합니다 .

모든 파형 유형에서 50 Ω 에 대한 출력 진폭은 10 mVpp ~ 2.5 Vpp(또는 개 방 회로 로드에 대해서는 20 mVpp ~ 5 Vpp)로 조정할 수 있습니다.

신호 파라미터 소프트키를 누르면 조정 유형을 선택할 수 있는 메뉴가 열립니 다. 예를 들어, 진폭 및 오프셋 값을 입력하거나 상위 레벨 및 하위 레벨 값을 입력하는 메뉴를 선택할 수 있습니다. 또는 주파수 값 또는 주기 값 입력을 선택할 수도 있습니다. 소프트키를 계속 누르면 조정 유형을 선택할 수 있습 니다. 엔트리 노브를 돌려 값을 조정합니다.

주파수, 주기, 폭의 경우 고속 조정과 미세 조정을 선택할 수 있습니다. 또한 엔트리 노브를 누르면 고속 조정과 미세 조정을 빠르게 전환할 수 있습니다. **설정** 소프트키를 누르면 파형 발생기와 관련된 다른 설정을 지정할 수 있는 파 형 발생기 설정 메뉴가 열립니다.

다음 항목을 참조하십시오.

- " 파형 발생기 동기 펄스를 출력하려면 " 238 페이지
- " 예상 출력 로드를 지정하려면 " 238 페이지
- " 파형 발생기 로직 사전 설정을 사용하려면 " 239 페이지
- " 파형 발생기 기본값을 복원하려면 " 245 페이지

파형 발생기 동기 펄스를 출력하려면

- 1 현재 오실로스코프의 소프트키에 Waveform Generator Menu(파형 발생기 메뉴) 가 표시되지 않는 경우, [Wave Gen](파형 발생기) 키를 누릅니다.
- 2 Waveform Generator Menu(파형 발생기 메뉴) 에서 Settings(설정) 소프 트키를 누릅니다.
- 3 파형 발생기 설정 메뉴에서 트리거 출력 소프트키를 누른 다음 엔트리 노브를 돌려 **파형 발생기 동기 펄스**를 선택합니다.

파형 유형	동기 신호 특성
DC 및 노이즈를 제 외한 모든 파형	동기 신호는 파형이 0 볼트 또는 DC 오프셋 값을 초과하여 상승 할 때 발생하는 TTL 양의 펄스입니다 .
DC	해당 없음
노이즈	해당 없음

예상 출력 로드를 지정하려면

1 현재 오실로스코프의 소프트키에 Waveform Generator Menu(파형 발생기 메뉴)가 표시되지 않는 경우, [Wave Gen](파형 발생기) 키를 누릅니다.

- 2 Waveform Generator Menu(파형 발생기 메뉴) 에서 설정 소프트키를 누릅 니다.
- 3 파형 발생기 설정 메뉴에서 출력 로드 소프트키를 누른 다음 엔트리 노브를 돌려 다음 항목을 선택합니다.
 - 50 Ω
 - High–Z

Gen Out BNC 의 출력 임피던스는 50 옴으로 고정되어 있습니다. 하지만 출력 로드 선택 기능을 사용하면 파형 발생기에 예상되는 출력 로드의 정확한 진폭과 오프셋 레벨이 표시됩니다.

실제 로드 임피던스가 선택한 값과 다르다면, 표시되는 진폭과 오프셋 레벨이 정확하지 않게 됩니다.

파형 발생기 로직 사전 설정을 사용하려면

로직 레벨 사전 설정을 사용하면 출력 전압을 TTL, CMOS(5.0V), CMOS(3.3V), CMOS(2.5V) 또는 ECL 호환 로우 레벨 및 하이 레벨로 쉽게 설 정할 수 있습니다.

- 1 현재 오실로스코프의 소프트키에 Waveform Generator Menu(파형 발생기 메뉴)가 표시되지 않는 경우, [Wave Gen](파형 발생기) 키를 누릅니다.
- 2 Waveform Generator Menu(파형 발생기 메뉴) 에서 Settings(설정) 소프 트키를 누릅니다.
- **3** Waveform Generator Settings Menu(파형 발생기 설정 메뉴) 에서 Logic **Presets**(로직 사전 설정) 소프트키를 누릅니다.
- 4 Waveform Generator Logic Level Presets Menu(파형 발생기 로직 레벨 사전 설정 메뉴)에서 다음과 같은 소프트키 중 하나를 눌러 발생된 신호의 로우 및 하이 전압을 로직 호환 레벨로 설정합니다.

소프트키 (로직 레벨)	로우 레벨	하이 레벨 , 50 옴 예 상 출력 로드	하이 레벨 , High-Z 예상 출력 로드
TTL	0 V	+2.5 V(TTL 호환)	+5 V
CMOS (5.0V)	0 V	해당 사항 없음	+5 V
CMOS (3.3V)	0 V	+2.5 V(CMOS 호환)	+3.3 V
CMOS (2.5V)	0 V	+2.5 V	+2.5 V
ECL	-1.7 V	-0.8 V(ECL 호환)	-0.9 V

파형 발생기 출력에 노이즈를 추가하려면

- 1 현재 오실로스코프의 소프트키에 Waveform Generator Menu(파형 발생기 메뉴) 가 표시되지 않는 경우, [Wave Gen](파형 발생기) 키를 누릅니다.
- 2 Waveform Generator Menu(파형 발생기 메뉴) 에서 설정 소프트키를 누릅 니다.
- 3 파형 발생기 설정 메뉴에서 노이즈 추가 소프트키를 누르고 엔트리 노브를 돌려 파형 발생기 출력에 추가할 화이트 노이즈의 양을 선택합니다.

노이즈를 추가하면 파형 발생기 소스 ("에지 트리거 "138 페이지 참조)의 에지 트리거링뿐 아니라 파형 발생기 동기 펄스 출력 신호 (TRIG OUT 으로 보낼 수 있음, "후면 패널 TRIG OUT 소스 설정 "274 페이지 참조)에도 영향이 있음에 유의하십시오. 이는 트리거 비교기가 노이즈 소스 뒤에 위치하기 때문입니다.

파형 발생기 출력에 변조를 추가하려면

변조를 수행하면 원래 반송파 신호가 두 번째 변조 신호의 진폭에 따라 수정됩니다. 변조 유형 (AM, FM, FSK)은 반송파 신호 수정 방법을 나타냅니다.

파형 발생기 출력에 대해 변조를 활성화 및 설정하려면 다음을 수행합니다.

- 1 현재 오실로스코프의 소프트키에 파형 발생기 메뉴가 표시되지 않는 경우, [Wave Gen] 파형 발생기 키를 누릅니다.
- 2 파형 발생기 메뉴에서 설정 소프트키를 누릅니다.
- 3 파형 발생기 설정 메뉴에서 변조 소프트키를 누릅니다.
- 4 파형 발생기 변조 메뉴에서 다음을 수행합니다.

 변조 소프트키를 눌러 변조된 파형 발생기 출력을 활성화하거나 비활성화 합니다.

펄스, DC 및 노이즈를 제외한 모든 파형 발생기 기능 유형에 대해 변조를 활성화할 수 있습니다.

- 유형 소프트키를 누른 다음 엔트리 노브를 돌려 변조 유형을 선택합니다.
 - 진폭 변조 (AM) 원래 반송파 신호 진폭이 변조 신호의 진폭에 따라 수 정됩니다. "진폭 변조 (AM) 를 설정하려면 "241 페이지을 참조하십시 오.
 - 주파수 변조 (FM) 원래 반송파 신호 주파수가 변조 신호의 진폭에 따라 수정됩니다. "주파수 변조 (FM) 를 설정하려면 "242 페이지을 참조하십시오.
 - FSK(주파수 편이 변조) 출력 주파수가 원래 반송파 주파수와 지정된 FSK 속도의 "홉 주파수 "간에 "전환 "됩니다. FSK 속도는 디지털 사 각 파형 변조 신호를 지정합니다. "FSK(주파수 편이 변조)를 설정하 려면 "244 페이지을 참조하십시오.

진폭 변조 (AM) 를 설정하려면

파형 발생기 변조 메뉴의 [Wave Gen] 파형 발생기 > 설정 > 변조 아래에서 다 음을 수행합니다.

- 1 유형 소프트키를 누른 다음 엔트리 노브를 돌려 진폭 변조 (AM) 를 선택합니다.
- 2 파형 소프트키를 누른 다음 엔트리 노브를 돌려 변조 신호의 형태를 선택합니다.
 - 사인
 - 사각
 - 램프
 - 사인 카디널
 - 지수 상승
 - 지수 하강

램프 형태를 선택하면 램프 파형이 상승하는 사이클당 시간을 지정할 수 있도 록 **대칭** 소프트키가 나타납니다.

- 3 AM 주파수 소프트키를 누른 다음 엔트리 노브를 돌려 변조 신호의 주파수를 지정합니다.
- 4 AM 깊이 소프트키를 누른 다음 엔트리 노브를 돌려 진폭 변조 정도를 지정합 니다.

AM 깊이는 변조에 의해 사용되는 진폭 범위 부분을 지칭합니다. 예를 들어 깊이 설정이 80% 이면 변조 신호가 최소 진폭에서 최대 진폭으로 이동할 때 출력 진폭이 원래 진폭의 10% ~ 90%(90% - 10% = 80%) 사이에서 변화합 니다.

아래 화면에는 100kHz 사인 파형 반송파 신호의 AM 변조가 나와 있습니다.

주파수 변조 (FM) 를 설정하려면

파형 발생기 변조 메뉴의 [Wave Gen] 파형 발생기 > 설정 > 변조 아래에서 다 음을 수행합니다.

- 1 유형 소프트키를 누른 다음 엔트리 노브를 돌려 주파수 변조 (FM)를 선택합니다.
- 2 파형 소프트키를 누른 다음 엔트리 노브를 돌려 변조 신호의 형태를 선택합니다.

• 사인

- 사각
- 램프
- 사인 카디널
- 지수 상승
- 지수 하강

램프 형태를 선택하면 램프 파형이 상승하는 사이클당 시간을 지정할 수 있도 록 **대칭** 소프트키가 나타납니다.

- 3 FM 주파수 소프트키를 누른 다음 엔트리 노브를 돌려 변조 신호의 주파수를 지정합니다.
- 4 FM 편차 소프트키를 누른 다음 엔트리 노브를 돌려 원래 반송파 신호 주파수 로부터의 주파수 편차를 지정합니다.

변조 신호가 최대 진폭일 때 출력 주파수는 반송파 신호 주파수 + 편차 값이 며 변조 신호가 최소 진폭일 때는 출력 주파수가 반송파 신호 주파수 - 편차 값입니다.

주파수 편차는 원래 반송파 신호 주파수보다 클 수 없습니다.

또한 원래 반송파 신호 주파수와 주파수 편차의 합은 선택한 파형 발생기 기능의 최대 주파수 + 100kHz 이하여야 합니다.

아래 화면에는 100kHz 사인 파형 반송파 신호의 FM 변조가 나와 있습니다.

FSK(주파수 편이 변조)를 설정하려면

파형 발생기 변조 메뉴의 [Wave Gen] 파형 발생기 > 설정 > 변조 아래에서 다 음을 수행합니다.

- 1 유형 소프트키를 누른 다음 엔트리 노브를 돌려 FSK(주파수 편이 변조)를 선택합니다.
- 2 홉 주파수 소프트키를 누른 다음 엔트리 노브를 돌려 "홉 주파수"를 지정합 니다.

출력 주파수는 원래 반송파 주파수와 이 "홉 주파수 "간에 "전환 "됩니다.

3 FSK 속도 소프트키를 누른 다음 엔트리 노브를 돌려 출력 주파수가 "전환" 되는 속도를 지정합니다.

FSK 속도는 디지털 사각 파형 변조 신호를 지정합니다.

아래 화면에는 100kHz 사인 파형 반송파 신호의 FSK 변조가 나와 있습니다.

파형 발생기 기본값을 복원하려면

- 1 현재 오실로스코프의 소프트키에 파형 발생기 메뉴가 표시되지 않는 경우, [Wave Gen](파형 발생기)키를 누릅니다.
- 2 파형 발생기 메뉴에서 설정 소프트키를 누릅니다.
- 3 파형 발생기 설정 메뉴에서 파형 발생기 기본값 소프트키를 누릅니다.

파형 발생기의 출고 시 기본 설정 (1 kHz 사인파, 500 mVpp, 오프셋 0 V, 출 력 로드 High-Z) 이 복원됩니다. 17 파형 발생기

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

18 저장/호출(설정,화면, 데이터)

설정, 화면 이미지 또는 데이터 저장 / 247 설정, 마스크 또는 기준 파형 호출 / 255 기본 설정 호출 / 256 보안 삭제 실행 / 257

오실로스코프 설정, 기준 파형 및 마스크 파일을 오실로스코프 내장 메모리 또 는 USB 저장 장치에 저장하고 나중에 불러올 수 있습니다. 또한 기본값 또는 출 고 시 기본 설정을 불러올 수 있습니다.

오실로스코프 화면 이미지도 USB 저장 장치에 BMP 또는 PNG 형식으로 저장 할 수 있습니다.

수집한 파형 데이터는 USB 저장 장치에 쉼표로 구분된 값 (CSV), ASCII XY, 2 진수 (BIN) 형식으로 저장할 수 있습니다.

또한 오실로스코프의 비휘발성 내장 메모리를 모두 안전하게 삭제할 수 있는 명 령도 있습니다.

- 설정, 화면 이미지 또는 데이터 저장
 - 1 [Save/Recall](저장/호출) 키를 누릅니다.
 - 2 저장 / 호출 메뉴에서 저장을 누릅니다.
 - 3 트레이스 및 설정 저장 메뉴에서 형식을 누른 다음, 엔트리 노브를 돌려 저장 하려는 파일 유형을 선택합니다.

- 설정 (*.scp) 오실로스코프에 특정 측정을 실행할 방법을 지시하는 오 실로스코프의 수평 타임베이스, 수직 감도, 트리거 모드, 트리거 레벨, 측정값, 커서, 산술 기능 설정. "설정 파일을 저장하려면 "249 페이지을 참조하십시오.
- 8 비트 비트맵 이미지 (*.bmp) 색상 간소화 (8 비트) 비트맵 형식의 전체 화면 이미지. "BMP 또는 PNG 이미지 파일을 저장하려면 "249 페이지을 참조하십시오.
- 24 비트 비트맵 이미지 (*.bmp) 24 비트 컬러 비트맵 형식의 전체 화면 이미지. "BMP 또는 PNG 이미지 파일을 저장하려면" 249 페이지을 참조 하십시오.
- 24 비트 이미지 (*.png) 무손실 압축을 사용하는 24 비트 컬러 PNG 형 식의 전체 화면 이미지. 파일 크기는 BMP 형식보다 훨씬 작습니다.
 "BMP 또는 PNG 이미지 파일을 저장하려면 " 249 페이지을 참조하십시오
- CSV 데이터 (*.csv) 표시되는 모든 채널과 산술 파형이 쉼표로 구분된 값의 파일로 생성됩니다. 이 형식은 스프레드시트 분석에 적합합니다.
 "CSV, ASCII XY 또는 BIN 데이터 파일을 저장하려면 " 250 페이지을 참조 하십시오.
- ASCII XY 데이터 (*.csv) 표시되는 각 채널이 쉼표로 구분된 값의 개별 파일로 생성됩니다. 이 형식도 스프레드시트에 적합합니다. "CSV, ASCII XY 또는 BIN 데이터 파일을 저장하려면 " 250 페이지을 참조하십시오.
- 기준 파형 데이터 (*.h5) 파형 데이터를 오실로스코프의 기준 파형 위치 중 하나로 호출할 수 있는 형식으로 저장합니다. "기준 파형 파일을 USB 저장 장치에 저장하려면 "253 페이지을 참조하십시오.
- 다중 채널 파형 데이터 (*.h5) 파형 데이터의 다중 채널을 N8900A
 InfiniiView 오실로스코프 분석 소프트웨어로 열 수 있는 형식으로 저장합니다.
 다중 채널 파형 데이터 파일에서 첫 번째 아날로그 또는 수학 채널을 불러올 수 있습니다.
- 2 진수 데이터 (*.bin) 헤더와 시간 및 전압 쌍 형태의 데이터로 구성된 2 진수 파일이 생성됩니다. 이 파일은 ASCII XY 데이터 파일보다 훨씬 작 습니다. "CSV, ASCII XY 또는 BIN 데이터 파일을 저장하려면 "250 페이 지을 참조하십시오.
- 리스터 데이터 (*.csv) 쉼표로 열이 구분된 형태로 시리얼 디코드 행 정 보가 포함된 CSV 형식 파일입니다. "리스터 데이터 파일을 저장하려면 " 252 페이지를 참조하십시오.

 마스크(*.msk) — Keysight InfiniiVision 오실로스코프에서 읽을 수 있는 Keysight 전용 형식의 마스크 파일을 생성합니다. 마스크 데이터 파일에 는 일부 오실로스코프 설정 정보가 포함되지만 전체 설정 정보는 포함되지 않습니다. 마스크 데이터 파일을 포함한 전체 설정 정보를 저장하려면 대 신 " 설정 (*.scp)" 형식을 선택하십시오. "마스크를 저장하려면 " 253 페 이지을 참조하십시오.

또한 설정, 화면 이미지 또는 데이터를 저장하도록 [Quick Action](빠른 실행) 키를 구성할 수도 있습니다. "[빠른 실행] 키 구성 " 280 페이지을 참조하십시 오.

설정 파일을 저장하려면

설정 파일은 10 곳의 내부 (₩User Files) 위치 중 한 곳 또는 외부 USB 저장 장 치에 저장할 수 있습니다 .

- 1 [저장 / 호출] > 저장 > 형식을 누른 다음, 엔트리 노브를 돌려 설정 (*.scp) 을 선택합니다.
- 2 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 저장 위치로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 3 마지막으로, 저장 (누름) 소프트키를 누릅니다.

저장이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

설정 파일의 확장명은 SCP 입니다. 파일 탐색기 (" 파일 탐색기 " 269 페이지 참 조) 를 사용할 때는 이 확장명이 표시되지만, 호출 메뉴를 사용할 때는 표시되 지 않습니다.

BMP 또는 PNG 이미지 파일을 저장하려면

이미지 파일은 외부 USB 저장 장치에 저장할 수 있습니다.

- 1 [저장 / 호출] > 저장 > 형식을 누른 다음, 엔트리 노브를 돌려 8 비트 비트 맵 이미지 (*.bmp), 24 비트 비트맵 이미지 (*.bmp) 또는 24 비트 이미지 (*.png) 를 선택합니다.
- **2** 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 저장 위치로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 3 설정 소프트키를 누릅니다.

파일 설정 메뉴에서 다음과 같은 소프트키와 옵션을 선택할 수 있습니다.

 설정 정보 — 설정 정보 (수직 , 수평 , 트리거 , 수집 , 산술 , 디스플레이 설 정) 또한 TXT 확장명의 별도 파일에 저장됩니다. 눈금 반전 — 이미지 파일의 눈금이 화면에 표시되는 검정색 배경 대신 흰 색 배경으로 저장됩니다.

- 팔래트 컬러 또는 흑백 이미지를 선택할 수 있습니다.
- 4 마지막으로, 저장 (누름) 소프트키를 누릅니다.

저장이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

참 고 화면 이미지를 저장할 때 , 오실로스코프는 [Save/Recall](저장 / 호출) 키를 누 르기 전 마지막으로 열었던 페이지를 사용합니다 . 따라서 소프트키 메뉴 영역 내의 관련 정보를 모두 저장할 수 있습니다 .

> 저장 / 호출 메뉴가 하단에 표시되는 상태로 화면 이미지를 저장하려면 , 이미지 를 저장하기 전에 **[Save/Recall]**(저장 / 호출) 키를 두 번 누르십시오 .

- 참 고또한 웹 브라우저를 사용하여 오실로스코프에 표시되는 이미지를 저장할 수도
있습니다. 자세한 내용은 "이미지 가져오기 " 292 페이지를 참조하십시오.
 - 관련 항목 "주석 추가" 281 페이지

CSV, ASCII XY 또는 BIN 데이터 파일을 저장하려면

데이터 파일은 외부 USB 저장 장치에 저장할 수 있습니다.

- 1 [저장 / 호출] > 저장 > 형식을 누른 다음, 엔트리 노브를 돌려 CSV 데이터 (*.csv), ASCII XY 데이터 (*.csv) 또는 2 진수 데이터 (*.bin) 를 선택합니다.
- 2 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 저장 위치로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 3 설정 소프트키를 누릅니다.

파일 설정 메뉴에서 다음과 같은 소프트키와 옵션을 선택할 수 있습니다.

- 설정 정보 이 옵션을 활성화하면 설정 정보 (수직 , 수평 , 트리거 , 수집 , 산술 , 디스플레이 설정) 또한 TXT 확장명의 별도 파일에 저장됩니다.
- **길이** 파일로 출력될 데이터 포인트의 수를 설정합니다. 자세한 내용은 "길이 제어" 251 페이지를 참조하십시오.
- 세그먼트 저장 데이터를 세그먼트 메모리에 수집한 경우, 현재 표시되는 세그먼트를 저장할 것인지 또는 수집된 세그먼트를 모두 저장할 것인지 지정할 수 있습니다. ("세그먼트 메모리에서 데이터 저장" 188 페이지도 참조)
- 4 마지막으로, 저장(누름)소프트키를 누릅니다.

저장이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

- 관련 항목 "2 진수 데이터 (.bin) 형식 " 305 페이지
 - "CSV 및 ASCII XY 파일 " 311 페이지
 - "CSV 파일 내의 최소 및 최대값 " 312 페이지

길이 제어

길이 제어 기능은 데이터를 CSV, ASCII XY 또는 BIN 형식 파일로 저장할 때 사 용할 수 있습니다. 이는 파일로 출력될 데이터 포인트의 수를 설정하는 기능입 니다. 표시된 데이터 포인트만 저장됩니다.

최대 데이터 포인트 수는 다음과 같은 요소에 따라 결정됩니다.

- 수집의 실행 여부. 수집이 중단된 경우 원시 수집 기록에서 나오는 데이터.
 수집이 실행 중인 경우 최소 측정 기록에서 나오는 데이터.
- [Stop](정지) 또는 [Single](싱글)을 사용하여 오실로스코프를 중지시켰 는지 여부. 수집 작업이 실행 중이면 파형 업데이트 속도를 높이기 위해 메모 리가 분할됩니다. 단일 수집 작업은 전체 메모리를 사용합니다.
- 한 쌍 중 하나의 채널만이 켜져 있는지 여부. (채널 1 과 2 가 하나의 쌍이며, 채널 3 과 4 가 또 하나의 쌍임) 수집 메모리는 쌍에 속한 채널에 따라 분할 됩니다.
- 기준 파형이 켜져 있는지 여부. 기준 파형을 표시하면 수집 메모리가 소비됩 니다.
- 디지털 채널이 켜져 있는지 여부. 디지털 채널을 표시하면 수집 메모리가 소 비됩니다.
- 세그먼트 메모리가 켜져 있는지 여부. 수집 메모리는 세그먼트 수대로 분할 됩니다.

- 수평 time/div(스위프 속도) 설정 . 빠르게 설정할수록 디스플레이에 더 적 은 데이터 포인트가 표시됩니다 .
- CSV 형식 파일로 저장할 때의 최대 데이터 포인트 수는 50,000 개입니다.

필요할 경우, 길이 제어 기능에서 데이터의 "1/n" 소멸 (decimation) 을 수행합 니다.예: **길이**를 1000 으로 설정하고 길이가 5000 데이터 포인트인 기록을 표 시하는 경우, 5 개 데이터 포인트마다 4 개가 소멸되어 길이 1000 데이터 포인 트의 출력 파일이 생성됩니다.

과형 데이터를 저장할 때, 저장 시간은 선택한 형식에 따라 달라집니다.

데이터 파일 형식	저장 시간
BIN	가장 빠름
ASCII XY	중간
CSV	가장 느림

- 관련 항목 "2 진수 데이터 (.bin) 형식 " 305 페이지
 - "CSV 및 ASCII XY 파일 " 311 페이지
 - "CSV 파일 내의 최소 및 최대값 " 312 페이지

리스터 데이터 파일을 저장하려면

리스터 데이터 파일은 외부 USB 저장 장치에 저장할 수 있습니다.

- 1 [저장/호출] > 저장 > 형식을 누른 다음, 엔트리 노브를 돌려 리스터 데이 터 파일을 선택합니다.
- 2 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 저장 위치로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 3 설정 소프트키를 누릅니다.

파일 설정 메뉴에서 다음과 같은 소프트키와 옵션을 선택할 수 있습니다.

- 설정 정보 이 옵션을 활성화하면 설정 정보 (수직 , 수평 , 트리거 , 수집 , 산술 , 디스플레이 설정) 또한 TXT 확장명의 별도 파일에 저장됩니다.
- 4 마지막으로, 저장 (누름) 소프트키를 누릅니다.

저장이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.
기준 파형 파일을 USB 저장 장치에 저장하려면

- 1 [Save/Recall](저장/호출) 키를 누릅니다.
- 2 저장 / 호출 메뉴에서 저장 소프트키를 누릅니다.
- 3 저장 메뉴에서 형식 소프트키를 누른 다음 엔트리 노브를 돌려 기준 파형 데 이터 (*.h5) 를 선택합니다.
- 4 소스 소프트키를 누른 다음, 엔트리 노브를 돌려 소스 파형을 선택합니다.
- 5 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 저장 위치로 이동합니다. " 저장 위치를 탐색하려면 " 253 페이지를 참조하십시오.
- 6 마지막으로, 저장 (누름) 소프트키를 누릅니다.

저장이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

마스크를 저장하려면

마스크 파일은 4 곳의 내부 (₩User Files) 위치 중 한 곳 또는 외부 USB 저장 장치에 저장할 수 있습니다.

- 1 [저장 / 호출] > 저장 > 형식을 누른 다음, 엔트리 노브를 돌려 마스크 (*.msk) 를 선택합니다.
- 2 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 저장 위치로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 3 마지막으로, 저장 (누름) 소프트키를 누릅니다.

저장이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

마스크 파일의 확장명은 MSK 입니다.

- 참 고 마스크는 설정 파일의 일부로도 저장됩니다 . <mark>" 설정 파일을 저장하려면</mark> " 249 페 이지를 참조하십시오 .
 - 관련 항목 15장, "마스크 테스트," 페이지 시작 217쪽

저장 위치를 탐색하려면

파일을 저장 또는 호출할 때, 저장 메뉴 또는 호출 메뉴의 두 번째 위치에 있는 소프트키와 엔트리 노브를 함께 사용하여 저장 위치를 탐색할 수 있습니다. 저 장 위치로는 오실로스코프의 내부 저장 위치 (설정 파일 및 마스크 파일용) 또 는 연결된 USB 저장 장치의 외부 저장 위치를 지정할 수 있습니다.

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

18 저장 / 호출 (설정, 화면, 데이터)

두 번째 위치의 소프트키에는 다음과 같은 라벨이 있을 수 있습니다.

- 눌러서 이동 엔트리 노브를 눌러서 새로운 폴더 또는 저장 위치를 탐색할 수 있습니다.
- 위치 현재 폴더 위치로 이동했을 때 (및 파일을 저장하지 않을 때)
- 저장 선택한 위치에 저장할 수 있을 때
- 로드 선택한 파일에서 호출할 수 있을 때

파일을 저장할 때,

- 제안 파일 이름이 소프트키 위의 다음 파일로 저장 = 라인에 표시됩니다.
- 기존 파일을 덮어쓰려면 해당 파일을 찾아 선택하십시오. 새 파일 이름을 만 들려면 "파일 이름을 입력하려면 "254 페이지를 참조하십시오.

파일 이름을 입력하려면

파일을 USB 저장 장치에 저장할 때 새로운 파일 이름을 만들려면 :

1 저장 메뉴에서 파일 이름 소프트키를 누릅니다.

오실로스코프에 USB 저장 장치가 연결되어 있어야 이 소프트키가 활성화됩니다.

- 2 파일 이름 메뉴에서 철자, 입력, 문자 삭제 소프트키를 사용하여 파일 이름 을 입력합니다.
 - 철자 이 소프트키를 누르고 엔트리 노브를 돌리면 현재 위치의 문자가 선택됩니다.
 - 입력 이 소프트키를 누르면 문자가 입력되며 커서가 다음 문자 위치로 이동합니다. 엔트리 노브를 누르는 것도 입력 소프트키를 누르는 것과 같 은 작용을 합니다.
 - 문자 삭제 이 소프트키를 누르면 현재 위치의 문자가 삭제됩니다.
- 참 고 철자 (및 기타) 문자 편집 소프트키를 사용하는 대신 연결된 USB 키보드를 사용할 수 있습니다..

사용 가능한 경우, **증가** 소프트키를 사용하여 파일 이름 자동 증가 기능을 활 성화 또는 비활성화할 수 있습니다. 자동 증가 기능은 파일이름에 숫자 접미 어를 추가하며, 이후 이어서 저장할 때마다 숫자가 증가합니다. 파일 이름 길이가 최대에 이르렀으나 파일 이름의 숫자 부분에 더 많은 자리수가 필요할 경우 문자를 잘라낼 수도 있습니다.

설정, 마스크 또는 기준 파형 호출

- 1 [Save/Recall](저장/호출) 키를 누릅니다.
- 2 저장 / 호출 메뉴에서 호출을 누릅니다.
- 3 호출 메뉴에서 호출:을 누른 다음, 엔트리 노브를 돌려 호출하려는 파일 유 형을 선택합니다.
 - 설정 (*.scp) "설정 파일을 호출하려면 " 255 페이지 참조
 - 마스크 (*.msk) "마스크 파일을 호출하려면 "255 페이지 참조
 - **기준 파형 데이터 (*.h5)** "기준 파형 파일을 USB 저장 장치에서 호출하 려면 " 256 페이지 참조

또한 파일 탐색기를 사용하여 로드하는 방법으로 설정과 마스크 파일을 호출할 수 있습니다. "파일 탐색기 "269 페이지를 참조하십시오.

또한 설정 , 마스크 또는 기준 파형을 호출하도록 [Quick Action](빠른 실행) 키를 구성할 수 있습니다 . "[빠른 실행] 키 구성 " 280 페이지을 참조하십시오

설정 파일을 호출하려면

10 곳의 내부 (₩User Files) 위치 중 한 곳 또는 외부 USB 저장 장치에서 설정 파일을 호출할 수 있습니다.

- 1 [저장 / 호출] > 호출 > 호출 : 을 누른 다음, 엔트리 노브를 돌려 설정 (*.scp) 을 선택합니다.
- 2 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 호출할 파일 로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 3 호출(누름) 소프트키를 누릅니다.

호출이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

4 디스플레이를 삭제하려면 **디스플레이 삭제**를 누르십시오.

마스크 파일을 호출하려면

4곳의 내부(₩User Files) 위치 중 한 곳 또는 외부 USB 저장 장치에서 마스크 파일을 불러올 수 있습니다.

1 [저장/호출]>호출>호출:을 누른 다음, 엔트리 노브를 돌려 마스크 (*.msk)를 선택합니다.

- 2 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 호출할 파일 로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 3 호출(누름)소프트키를 누릅니다.

호출이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

4 디스플레이를 삭제하거나 호출한 마스크를 삭제하려면 □스플레이 삭제 또 는 마스크 삭제를 누르십시오.

기준 파형 파일을 USB 저장 장치에서 호출하려면

- 1 [Save/Recall](저장/호출) 키를 누릅니다.
- 2 저장 / 호출 메뉴에서 호출 소프트키를 누릅니다.
- 3 호출 메뉴에서 호출 소프트키를 누른 다음 엔트리 노브를 돌려 기준 파형 데 이터 (*.h5) 를 선택합니다.
- 4 기준 파형 위치: 소프트키를 누른 다음, 엔트리 노브를 돌려 원하는 기준 파 형 위치를 선택합니다.
- 5 두 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 호출할 파일 로 이동합니다. "저장 위치를 탐색하려면 "253 페이지를 참조하십시오.
- 6 호출(누름) 소프트키를 누릅니다.

호출이 성공적이었는지 여부를 나타내는 메시지가 표시됩니다.

7 기준 파형을 제외한 모든 항목을 디스플레이에서 삭제하려면 디스플레이 삭 제를 누르십시오.

기본 설정 호출

- 1 [Save/Recall](저장/호출) 키를 누릅니다.
- 2 저장 / 호출 메뉴에서 기본 / 삭제를 누릅니다.
- 3 기본 메뉴에서 다음 소프트키 중 하나를 누릅니다.
 - 기본 설정 오실로스코프의 기본 설정을 호출합니다. 이는 전면 패널 [Default Setup](기본 설정) 키를 누르는 것과 같습니다. "기본 오실로스 코프 설정 호출 "27 페이지을 참조하십시오.

기본 설정을 불러올 때 일부 사용자 설정은 변경되지 않습니다.

출고 시 설정 — 오실로스코프의 출고 시 기본 설정을 호출합니다.

변경되지 않고 유지되는 사용자 설정이 없으므로 호출 작업의 실행 여부를 확인해야 합니다.

보안 삭제 실행

- 1 [Save/Recall](저장/호출) 키를 누릅니다.
- 2 저장 / 호출 메뉴에서 기본 / 삭제를 누릅니다.
- 3 기본 메뉴에서 보안 삭제를 누릅니다.

그러면 NISPOM(National Industrial Security Program Operation Manual) 8 장 요건에 따라 모든 비휘발성 메모리의 보안 삭제가 실행됩니다.

사용자가 보안 삭제 실행 여부를 확인해야 하며, 작업이 완료되면 오실로스 코프가 재부팅됩니다.

18 저장 / 호출 (설정 , 화면 , 데이터)

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

19 인쇄 (화면)

오실로스코프 화면을 인쇄하려면 / 259 네트워크 프린터 연결을 설정하려면 / 261 프린트 종류를 지정하려면 / 262 팔래트 옵션을 지정하려면 / 263

DSOXLAN LAN/VGA 모듈을 설치한 경우, 상태 표시줄과 소프트키를 포함한 전체 화면을 USB 프린터 또는 네트워크 프린터로 인쇄할 수 있습니다.

[Print](인쇄) 키를 누르면 프린트 구성 메뉴가 표시됩니다. 프린터를 연결할 때까지 프린트 종류 소프트키와 **눌러서 인쇄하기** 소프트키는 음영 처리(사용 불가)됩니다.

오실로스코프 화면을 인쇄하려면

- 1 프린터를 연결합니다. 다음과 같은 선택이 가능합니다.
 - USB 프린터를 전면 패널에 있는 USB 포트 또는 후면 패널에 있는 사각형 USB 호스트 포트에 연결합니다.

InfiniiVision 오실로스코프와 호환되는 프린터의 최신 목록은 www.keysight.com/find/InfiniiVision-printers 를 참조하십시오.

- 네트워크 프린터 연결을 설정합니다. "네트워크 프린터 연결을 설정하려 면 "261 페이지을 참조하십시오.
- 2 전면 패널에 있는 [Print](인쇄) 키를 누릅니다.
- 3 프린트 구성 메뉴에서 출력 선택 소프트키를 누른 다음, 엔트리 노브를 돌려 원하는 프린터를 선택합니다.
- 4 선택 소프트키를 눌러 인쇄 옵션을 선택합니다.

"프린트 종류를 지정하려면 "262 페이지을 참조하십시오.

- 5 **팔래트** 소프트키를 눌러 인쇄 팔래트를 선택합니다. "팔래트 옵션을 지정하 려면 "263 페이지을 참조하십시오.
- 6 눌러서 인쇄하기 소프트키를 누릅니다.

인쇄 취소 소프트키를 눌러 인쇄를 중단할 수 있습니다.

참 고 오실로스코프에서는 사용자가 [Print](인쇄) 키를 누르기 전 마지막으로 열었 던 메뉴를 인쇄합니다. 따라서 [Print](인쇄)를 누르기 전에 디스플레이에 측 정(진폭, 주파수 등) 결과가 표시되어 있었다면, 해당 측정 결과가 출력물로 나옵니다.

> 프린트 구성 메뉴가 하단에 표시된 화면을 인쇄하려면 [Print](인쇄) 키를 두 번 누른 다음, 눌러서 인쇄하기 소프트키를 누르십시오.

또한 화면을 인쇄하도록 [Quick Action](빠른 실행) 키를 구성할 수도 있습니 다. "[빠른 실행] 키 구성 "280 페이지을 참조하십시오.

관련 항목 • "주석 추가" 281 페이지

네트워크 프린터 연결을 설정하려면

DSOXLAN LAN/VGA 모듈을 설치한 경우 네트워크 프린터 연결을 설정할 수 있습니다.

*네트워크 프린터*란 네트워크상의 컴퓨터 또는 프린트 서버에 연결된 프린터를 의미합니다.

- 1 전면 패널에 있는 [Print](인쇄) 키를 누릅니다.
- 2 프린트 구성 메뉴에서 출력 선택 소프트키를 누른 다음, 엔트리 노브를 돌려 구성할 네트워크 프린터 (#0 또는 #1 중 하나)를 선택합니다.
- 3 네트워크 설정 소프트키를 누릅니다.
- 4 네트워크 프린터 구성 메뉴에서 수정 소프트키를 누른 다음, 엔트리 노브를 돌려 입력할 네트워크 파라미터를 선택합니다.

입력해야 하는 설정은 다음과 같습니다.

- 프린터 주소 다음 형식 중 한 형식으로 된 프린트 서버의 주소입니다.
 - 네트워크 지원 프린터의 IP 주소 (예: 192.168.1.100 또는 192.168.1.100:650). 비표준 포트 번호는 콜론 뒤에 지정될 수도 있습 니다.
 - 프린트 서버의 IP 주소 뒤에 이어지는 프린터 경로 (예: 192.168.1.100/printers/printer-name 또는 192.168.1.100:650/printers/printer-name).
 - Windows 네트워크 프린터 공유 경로 (예: ₩₩server₩share).

프린터 주소가 Windows 네트워크 프린터 공유 경로인 경우 **수정** 소프트키로 다음 설정을 변경할 수도 있습니다.

- 네트워크 도메인 Windows 네트워크 도메인 이름입니다.
- 사용자 ID Windows 네트워크 도메인에 사용할 로그인 ID 입니다.
- 암호 Windows 네트워크 도메인에 사용할 로그인 암호입니다.

입력한 암호를 삭제하려면 암호 삭제 소프트키를 누르십시오.

- 5 철자, 입력, 문자 삭제 소프트키를 사용하여 다음과 같이 네트워크 프린터 설정을 입력합니다.
 - **철자** 이 소프트키를 누르고 엔트리 노브를 돌리면 현재 위치의 문자가 선택됩니다.
 - **입력** 이 소프트키를 누르면 문자가 입력되며 커서가 다음 문자 위치로 이동합니다.

19 인쇄(화면)

문자 삭제 — 원하는 문자가 강조 표시될 때까지 입력 소프트키를 누른 다음, 이 소프트키를 누르면 문자가 삭제됩니다.

참고 철자(및 기타) 문자 편집 소프트키를 사용하는 대신 연결된 USB 키보드를 사용할 수 있습니다 ..

6 적용 소프트키를 누르면 프린터 연결이 실행됩니다.

연결에 성공했는지 여부를 알리는 메시지가 표시됩니다.

프린트 종류를 지정하려면

프린트 구성 메뉴에서 **선택** 소프트키를 누르면 다음과 같은 옵션을 변경할 수 있습니다.

- 설정 정보 출력물에 수직, 수평, 트리거, 수집, 산술 및 디스플레이 설정 을 포함한 오실로스코프 설정 정보를 인쇄하려면 이 옵션을 선택합니다.
- 구획선 반전색 검정색 배경을 흰색으로 바꿔 오실로스코프 이미지를 인쇄 하는 데 소비되는 검정색 잉크의 양을 줄이려면 이 옵션을 선택합니다. 구획 선 반전색이 기본 모드입니다.

눈금 반전되지 않음

- 몸 피드 파형이 인쇄된 후와 설정 정보가 인쇄되기 전에 폼 피드 명령을 프 린터로 전송하려면 이 옵션을 선택합니다. 설정 정보를 파형과 같은 페이지 에 인쇄하려면 폼 피드 옵션을 끄십시오. 이 옵션은 설정 정보 옵션을 선택한 경우에만 효과가 있습니다. 또한 설정 정보의 양이 파형과 같은 페이지에 인 쇄하기에 적당하지 않을 경우, 폼 피드 설정에 관계없이 새 페이지에 인쇄됩 니다.
- 가로 방향 페이지를 수직 방향 (세로 방향 모드)이 아닌 수평 방향으로 인 쇄하려면 이 옵션을 선택합니다.

팔래트 옵션을 지정하려면

프린트 구성 메뉴에서 **팔래트** 소프트키를 누르면 다음과 같은 옵션을 변경할 수 있습니다.

• 컬러 — 화면을 컬러로 인쇄하려면 이 옵션을 선택합니다.

오실로스코프의 프린트 드라이버는 컬러 레이저 프린터에 컬러 이미지를 인 쇄하지 못하므로, 레이저 프린터에 연결된 경우 **컬러** 옵션을 사용할 수 없습 니다.

• 흑백 — 화면을 컬러가 아닌 회색 음영으로 인쇄하려면 이 옵션을 선택합니다

19 인쇄(화면)

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

20 유틸리티 설정

I/O 인터페이스 설정 / 265 오실로스코프의 LAN 연결 설정 / 266 파일 탐색기 / 269 오실로스코프의 기본 설정 지정 / 271 오실로스코프의 시계 설정 / 274 후면 패널 TRIG OUT 소스 설정 / 274 서비스 작업 실행 / 275 [빠른 실행] 키 구성 / 280 주석 추가 / 281

이 장에서는 오실로스코프의 유틸리티 기능을 설명합니다.

I/O 인터페이스 설정

아래와 같은 I/O 인터페이스를 통해 오실로스코프를 원격으로 액세스 및 / 또는 제어할 수 있습니다.

- 후면 패널의 USB 장치 포트 (정사각형 USB 포트)
- LAN 인터페이스 후면 패널 모듈 슬롯에 LAN/VGA 모듈이 설치된 경우
- GPIB 인터페이스 후면 패널 모듈 슬롯에 GPIB 모듈이 설치된 경우

I/O 인터페이스를 구성하려면 :

- 1 오실로스코프의 전면 패널에서 [유틸리티]를 누릅니다.
- 2 유틸리티 메뉴에서 I/O 를 누릅니다.
- **3** I/O 메뉴에서 **구성**을 누릅니다.

20 유틸리티 설정

- LAN DSOXLAN LAN/VGA 모듈이 설치된 경우 LAN 설정 및 LAN 재설 정 소프트키를 사용하여 LAN 인터페이스를 구성할 수 있습니다. "오실로 스코프의 LAN 연결 설정 " 266 페이지을 참조하십시오.
- **GPIB** DSOXGPIB GPIB 모듈이 설치된 경우, **주소** 소프트키를 사용하 여 GPIB 주소를 구성할 수 있습니다.
- USB 인터페이스에는 적용할 구성 설정이 없습니다.

I/O 인터페이스를 설치하면 항상 해당 인터페이스를 통한 원격 제어가 활성화됩 니다. 또한 동시에 다수의 I/O 인터페이스 (예: USB 및 LAN)를 통해 오실로 스코프를 제어할 수 있습니다.

- 관련 항목 21 장, "웹 인터페이스,"페이지 시작 285 쪽 (오실로스코프가 LAN 에 연 결된 경우)
 - "웹 인터페이스를 통한 원격 프로그래밍" 288 페이지
 - 오실로스코프의 프로그래머 설명서.
 - "Keysight IO 라이브러리를 사용한 원격 프로그래밍" 290 페이지

오실로스코프의 LAN 연결 설정

DSOXLAN LAN/VGA 모듈이 설치된 경우, 오실로스코프를 네트워크에 배치 하고 LAN 연결을 설정할 수 있습니다. 위 작업이 완료된 후에는 오실로스코프 의 웹 인터페이스를 사용하거나, 원격으로 LAN 인터페이스를 통해 오실로스코 프를 제어할 수 있습니다.

오실로스코프는 자동 LAN 구성 또는 수동 LAN 구성 방식을 지원합니다 ("LAN 연결을 구성하려면 "267 페이지 참조). 또한 PC 와 오실로스코프 사이에 포인 트 투 포인트 LAN 연결을 설정하는 것도 가능합니다 ("PC 에 대한 독립형 (포 인트 투 포인트) 연결 "268 페이지 참조).

오실로스코프를 네트워크에 설정한 후에는 오실로스코프의 웹 페이지를 사용하 여 네트워크 구성을 확인 또는 변경하고 추가 설정(네트워크 암호 등)에 액세 스할 수 있습니다. 21 장, "웹 인터페이스,"페이지 시작 285 쪽를 참조하십시 오.

참 고오실로스코프를 LAN 에 연결할 때는 암호를 설정하여 오실로스코프에 대한 액
세스를 제한하는 것이 좋습니다 . 기본적으로 오실로스코프는 암호로 보호되지
않습니다 . 암호를 설정하는 방법은 "암호 설정 " 295 페이지을 참조하십시오 .

참 고

오실로스코프의 호스트 이름을 변경할 때는 항상 오실로스코프와 LAN 사이의 연결이 해제됩니다. 새로운 호스트 이름을 사용하여 오실로스코프에 대한 통신 을 다시 구성해야 합니다.

LAN 연결을 구성하려면

- 자동 구성 1 [유틸리티] > Ⅰ/O 를 누릅니다.
 - 2 LAN 설정 소프트키를 누릅니다.
 - 3 구성 소프트키를 누른 다음, 엔트리 노브를 돌려 자동을 선택하고 소프트키 를 다시 눌러 활성화합니다.

네트워크가 DHCP 또는 AutoIP 를 지원할 경우, **자동**을 활성화하면 오실로 스코프가 해당 서비스를 사용하여 LAN 구성 설정을 가져올 수 있습니다.

- 4 네트워크에서 동적 DNS 를 지원할 경우 동적 DNS 옵션을 활성화하면 오실 로스코프에서 호스트 이름을 등록하고 DNS 서버를 사용하여 이름을 분석할 수 있게 됩니다.
- 5 **멀티캐스트 DNS** 옵션을 활성화하면 기존 DNS 서버가 없는 소규모 네트워크 에서 오실로스코프가 멀티캐스트 DNS 를 이름 분석에 사용할 수 있습니다.
- 6 LAN 케이블을 오실로스코프 후면 패널에 있는 "LAN" 포트에 삽입하여 오실 로스코프를 LAN 에 연결합니다.

잠시 후에 오실로스코프가 네트워크에 자동으로 연결됩니다.

오실로스코프가 네트워크에 자동으로 연결되지 않을 경우, [유틸리티]> I/O>LAN 재설정을 누르십시오. 잠시 후에 오실로스코프가 네트워크에 연 결됩니다.

- 수동 구성 1 네트워크 관리자에게 오실로스코프의 네트워크 파라미터 (호스트 이름, IP 주소, 서브넷 마스크, 게이트웨이 IP, DNS IP 등)를 확인하십시오.
 - 2 [유틸리티] > I/O 를 누릅니다.
 - 3 LAN 설정 소프트키를 누릅니다.
 - **4** 구성 소프트키를 누른 다음, 엔트리 노브를 돌려 **자동**을 선택하고 소프트키 를 다시 눌러 비활성화합니다.

자동이 활성화되지 않은 경우, **주소** 및 **호스트 이름** 소프트키를 사용하여 오 실로스코프 '의 LAN 구성을 수동으로 설정해야 합니다. 20 유틸리티 설정

- 5 오실로스코프의 LAN 인터페이스를 구성합니다.
 - a 주소 소프트키를 누릅니다.
 - b 수정 소프트키(및 다른 소프트키와 엔트리 노브)를 사용하여 IP 주소, 서브넷 마스크, 게이트웨이 IP, DNS IP 값을 입력합니다. 완료되면 다시 메뉴 계층 구조 위로 이동합니다.
 - c 호스트 이름 소프트키를 누릅니다. 소프트키와 엔트리 노브를 사용하여 호스트 이름을 입력합니다. 완료되면 다시 메뉴 계층 구조 위로 이동합니 다.
 - d 적용 소프트키를 누릅니다.
- 6 LAN 케이블을 오실로스코프 후면 패널에 있는 "LAN" 포트에 삽입하여 오실 로스코프를 LAN 에 연결합니다.

PC 에 대한 독립형 (포인트 투 포인트) 연결

다음 절차는 오실로스코프에 대해 포인트 투 포인트 (독립형) 연결을 구성하는 방법을 설명합니다. 이 기능은 노트북 컴퓨터 또는 독립형 컴퓨터를 사용하여 오실로스코프를 제어하려는 경우에 유용합니다.

- 1 [유틸리티] > 1/0 를 누릅니다.
- 2 LAN 설정 소프트키를 누릅니다.
- 3 구성 소프트키를 누른 다음, 엔트리 노브를 돌려 자동을 선택하고 소프트키 를 다시 눌러 활성화합니다.

네트워크가 DHCP 또는 AutoIP 를 지원할 경우, **자동**을 활성화하면 오실로 스코프가 해당 서비스를 사용하여 LAN 구성 설정을 가져올 수 있습니다.

- 4 웹 사이트 www.keysight.com/find/parts 에서 구매할 수 있는 Keysight 부 품 번호 5061-0701 과 같은 크로스오버 LAN 케이블을 사용하여 PC 를 오 실로스코프에 연결합니다.
- 5 오실로스코프의 전원을 껐다가 켭니다. LAN 연결이 구성될 때까지 기다립니다.
 - [유틸리티]> I/O를 누르고 LAN 상태가 "구성됨 "으로 표시될 때까지 기다립니다.
 - 이 작업은 몇 분 정도 걸릴 수 있습니다.

이제 계측기가 연결되었으며, 계측기의 웹 인터페이스 또는 LAN 을 통한 원격 제어를 사용할 수 있습니다.

파일 탐색기

파일 탐색기를 통해 오실로스코프의 내부 파일 시스템과 연결된 USB 저장 장치 의 파일 시스템을 탐색할 수 있습니다.

내부 파일 시스템에서는 오실로스코프의 설정 파일 또는 마스크 파일을 로드할 수 있습니다.

연결된 USB 저장 장치에서는 설정 파일, 마스크 파일, 라이센스 파일, 펌웨어 업데이트 (*.ksx) 파일, 라벨 파일 등을 로드할 수 있습니다. 또한 연결된 USB 저장 장치에서 파일을 삭제할 수도 있습니다.

참 고 전면 패널의 USB 포트와 후면 패널에 있는 "HOST" 라는 라벨이 부착된 USB 포 트는 USB 시리즈 A 소켓입니다 . 이 소켓은 USB 대용량 저장 장치와 프린터를 연결할 수 있는 소켓입니다 .

> 후면 패널에 있는 "DEVICE" 라는 라벨이 부착된 사각형 소켓은 USB 를 통해 오 실로스코프를 제어하는 데 사용됩니다 . 자세한 내용은 *프로그래머 설명서*를 참 조하십시오 .

오실로스코프의 내부 파일 시스템은 "₩User Files" 아래에 위치하며, 오실로 스코프 설정 파일용으로 10 개의 위치, 마스크 파일용으로 4 개의 위치가 있습 니다.

파일 탐색기를 사용하려면 :

- 1 [유틸리티] > 파일 탐색기를 누릅니다.
- 2 파일 탐색기 메뉴에서 첫 번째 위치에 있는 소프트키를 누르고 엔트리 노브를 사용하여 탐색합니다.

1	2 3 100%/ 4	0.0s	500.0%/	자동	£ 3	24.00
- 3₽	<pre> Agilent Flash A</pre>	07-2010 17:39 07-2010 17:39 07-2010 17:39 07-2010 17:39 07-2010 17:39 15-2010 17:53 18-2010 17:27 18-2010 17:28 18-2010 17:28 18-201			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	분수····································
	● 위치 올리기 <몹M502000 파일	삭제 파일				

첫 번째 위치의 소프트키에는 다음과 같은 라벨이 있을 수 있습니다.

- 눌러서 이동 엔트리 노브를 눌러서 새로운 폴더 또는 저장 위치를 탐색 할 수 있습니다.
- 위치 현재 선택된 디렉터리를 가리킬 때 사용합니다.
- 선택 항목 로드 또는 삭제 가능한 파일을 가리킬 때 사용합니다.

이 라벨이 표시될 때 **파일 로드** 또는 **파일 삭제** 소프트키를 누르면 작업이 실행됩니다.

엔트리 노브를 누르는 것도 **파일 로드** 소프트키를 누르는 것과 같은 작용 을 합니다.

USB 저장 장치에서 삭제된 파일은 오실로스코프에서 복원할 수 없습니다

PC 를 사용하여 USB 저장 장치에 디렉터리를 만드십시오.

USB 저장 장치 대부분의 USB 대용량 저장 장치는 오실로스코프와 호환됩니다. 단, 일부 장치는 호환되지 않을 수 있으며, 이 경우 읽기 또는 쓰기가 불가능합니다.

USB 대용량 저장 장치를 오실로스코프의 전면 또는 후면 USB 호스트 포트에 연결할 때, USB 장치를 읽는 도중 4 색의 원형 아이콘이 잠시 표시될 수 있습니 다. USB 대용량 저장 장치는 분리하기 전에 "배출"할 필요가 없습니다. 시작한 파 일 작업이 완료되었는지만 확인하고 오실로스코프의 호스트 포트에서 USB 드 라이브를 분리하면 됩니다.

하드웨어 형태의 "CD" 로 식별되는 USB 장치의 경우 InfiniiVision X 시리즈 오 실로스코프와 호환되지 않으므로 연결하지 마십시오.

오실로스코프에 USB 대용량 저장 장치 2 개가 연결된 경우, 첫 번째는 "₩usb" 로, 두 번째는 "₩usb2" 로 지명됩니다

관련 항목 • 18장, "저장 / 호출 (설정, 화면, 데이터)," 페이지 시작 247쪽

오실로스코프의 기본 설정 지정

사용자 기본 설정 메뉴 ([유틸리티] > 옵션 > 기본 설정)에서 오실로스코프 기 본 설정을 지정할 수 있습니다.

- "중앙 또는 접지를 중심으로 "확장"을 선택하려면 "271 페이지
- "투명 배경을 활성화 / 비활성화하려면 "272 페이지
- "기본 라벨 라이브러리를 로드하려면 "272 페이지
- "화면 보호기를 설정하려면 "272 페이지
- "자동설정 기본 설정을 지정하려면 "273 페이지

중앙 또는 접지를 중심으로 "확장"을 선택하려면

채널의 volts/div 설정을 변경하는 경우, 신호 접지 레벨 또는 디스플레이 중앙 을 중심으로 확장(또는 축소)되도록 파형 디스플레이를 설정할 수 있습니다. 파형 확장 기준 포인트를 설정하려면:

- 1 [유틸리티] > 옵션 > 기본 설정 > 확장을 누르고 다음 항목을 선택합니다.
 - 접지 표시되는 파형이 채널 접지 위치를 중심으로 확장됩니다. 이 설정 이 기본 설정입니다.

신호의 접지 레벨은 디스플레이 맨 왼쪽에 있는 접지 레벨 (♪) 아이콘의 위치로 확인할 수 있습니다.

수직 감도 (volts/div) 컨트롤을 조정한 경우 접지 레벨은 이동되지 않습니다.

접지 레벨이 화면을 벗어나 있는 경우, 파형은 접지가 화면을 벗어난 위치 를 기준으로 화면의 상단 또는 하단 가장자리를 중심으로 확장됩니다. 중앙 — 표시되는 파형이 디스플레이 중앙을 중심으로 확장됩니다.

투명 배경을 활성화 / 비활성화하려면

측정, 통계, 기준 파형 정보 및 기타 텍스트 디스플레이에 투명 배경 또는 단색 배경을 사용할 것인지 설정하는 기본 설정이 있습니다.

- 1 [유틸리티] > 옵션 > 기본 설정을 누릅니다.
- 2 투명을 누르면 투명과 단색 텍스트 디스플레이 배경이 전환됩니다.
- 기본 라벨 라이브러리를 로드하려면

" 라벨 라이브러리를 출고 시 설정으로 재설정하려면 " 133 페이지을 참조하십 시오 .

화면 보호기를 설정하려면

오실로스코프가 지정된 시간 동안 유휴 상태일 때 디스플레이 화면 보호기가 켜 지도록 오실로스코프를 구성할 수 있습니다.

1 [유틸리티] > 옵션 > 기본 설정 > 화면 보호기를 눌러 화면 보호기 메뉴를 엽니다.

화면 보호기 메뉴			
◆ 보호기 로고	(-) 대기 180min	미리보기	

2 보호기 소프트키를 누르고 화면 보호기 유형을 선택합니다.

화면 보호기는 **꺼짐**으로 설정하거나, 목록에 표시되는 이미지 중 하나로 표 시되도록 설정하거나 또는 사용자 정의 텍스트 문자열을 표시하도록 설정할 수 있습니다.

사용자를 선택한 경우, **철자** 소프트키를 눌러 텍스트 문자열의 첫 번째 문자 를 선택합니다. 엔트리 노브를 사용하여 문자를 선택합니다. 그런 다음 **입력** 소프트키를 눌러 다음 문자로 진행하고 절차를 반복합니다.

참 고 철자(및 기타) 문자 편집 소프트키를 사용하는 대신 연결된 USB 키보드를 사용할 수 있습니다 ..

결과 문자열은 소프트키 위의 "텍스트 =" 라인에 표시됩니다.

3 대기 소프트키를 누르고 엔트리 노브를 돌려 선택한 화면 보호기가 작동하기 전에 대기할 시간(분)을 선택합니다.

엔트리 노브를 돌리면 분에 해당하는 수가 **대기** 소프트키에 표시됩니다. 기 본 시간은 180분(3시간)입니다.

- 4 미리보기 소프트키를 눌러 보호기 소프트키로 선택한 화면 보호기를 미리 볼 수 있습니다.
- 5 화면 보호기가 시작된 후 일반 디스플레이를 보려면 아무 키나 누르거나 아무 노브나 돌리면 됩니다.

자동설정 기본 설정을 지정하려면

- 1 [유틸리티] > 옵션 > 기본 설정 > 자동설정을 누릅니다.
- 2 자동설정 기본 설정 메뉴에서 다음과 같은 작업이 가능합니다.
 - 고속 디버그 소프트키를 누르면 해당 유형의 자동설정이 활성화 / 비활성 화됩니다.

고속 디버그를 활성화하면, 자동설정을 사용하여 빠른 시각적 비교를 통 해 프로빙되는 신호가 DC 전압, 접지 또는 활성 AC 신호인지 여부를 판정 할 수 있습니다.

오실로스코프 신호를 손쉽게 볼 수 있도록 채널 커플링이 유지됩니다.

- 채널 소프트키를 누르고 엔트리 노브를 돌려 자동설정을 적용할 채널을 다 음과 같이 지정할 수 있습니다.
 - 모든 채널 다음 번에 [AutoScale](자동설정)을 누를 때 자동설정 조건을 만족하는 모든 채널이 표시됩니다.
 - 표시되는 채널만 다음 번에 [AutoScale](자동설정)을 누를 때 켜져 있는 채널만 신호 활성 여부가 검사됩니다. 이 기능은 [AutoScale](자 동설정)을 누른 후 특정 활성 채널만 보려고 할 경우에 유용합니다.
- 수집 모드 소프트키를 누르고 엔트리 노브를 돌려 자동설정 도중 수집 모 드를 유지할 것인지 선택할 수 있습니다.
 - 일반 [AutoScale](자동설정) 키를 누를 때마다 오실로스코프가 일 반 수집 모드로 전환됩니다. 이 설정이 기본 모드입니다.
 - 보존 [AutoScale](자동설정) 키를 누를 때 오실로스코프에서 사용 자가 선택한 수집 모드를 유지합니다.

오실로스코프의 시계 설정

시계 메뉴를 사용하여 현재 날짜와 시간(24 시간제)을 설정할 수 있습니다. 이 시간/날짜 스탬프는 하드카피 출력물과 USB 대용량 저장 장치의 디렉터리 정 보에 표시됩니다.

날짜와 시간을 설정하거나 현재 날짜 및 시간을 보려면 :

1 [유틸리티] > 옵션 > 시계를 누릅니다.

2 년도, 달, 일, 시간 또는 분 소프트키를 누른 다음, 엔트리 노브를 돌려 원하 는 숫자를 설정합니다.

시간은 24 시간제로 표시되므로, 1:00 PM 은 13 시가 됩니다.

실시간 시계에는 유효한 날짜만 선택할 수 있습니다. 날짜를 선택한 후에 년도 또는 달을 변경하여 날짜가 유효하지 않게 되는 경우, 날짜가 자동으로 조정됩 니다.

후면 패널 TRIG OUT 소스 설정

오실로스코프의 후면 패널에 있는 TRIG OUT 커넥터의 소스를 다음과 같이 선 택할 수 있습니다.

1 [Utility] 유틸리티 > 옵션 > 후면 패널을 누릅니다.

후면 패널 소프트키가 나타나지 않는다는 것은 마스크 테스트와 파형 발생기 모두 라이센스가 부여되지 않으며 오실로스코프 트리거가 기본적으로 TRIG OUT(트리거 출력)으로 전송됨을 의미합니다.

- 2 후면 패널 메뉴에서 트리거 출력을 누른 다음 엔트리 노브를 돌려 다음 중에 서 하나를 선택합니다.
 - 트리거 오실로스코프가 트리거할 때마다 TRIG OUT(트리거 출력)에 상승 에지가 발생합니다. 상승 에지는 오실로스코프의 트리거 포인트로부 터 30 ns 지연됩니다. 출력 레벨은 개방 회로에 대해 0-5V, 50Ω에 대 해 0~2.5V 입니다. 10 장, "트리거," 페이지 시작 135 쪽 단원을 참조하 십시오.

- 마스크 통과 / 실패 상태가 주기적으로 평가됩니다. 테스트 주기의 평가 결과가 실패일 경우, 트리거 출력이 높은 쪽 (+5 V) 펄스가 됩니다. 그렇 지 않으면 트리거 출력이 낮은 쪽 (0 V) 으로 유지됩니다. 15 장, "마스크 테스트," 페이지 시작 217 쪽 단원을 참조하십시오.
- **파형 발생기 동기 펄스** 파형 발생기 출력 기능 모두 (DC 및 노이즈 제외)에는 관련된 동기 신호가 있습니다.

동기 신호는 파형이 0 볼트 또는 DC 오프셋 값을 초과하여 상승할 때 발생 하는 TTL 양의 펄스입니다.

17 장, " 파형 발생기," 페이지 시작 235 쪽 단원을 참조하십시오.

TRIG OUT 커넥터는 또한 사용자 교정 신호도 제공합니다. " 사용자 보정을 실 행하려면 " 276 페이지 단원을 참조하십시오.

서비스 작업 실행

서비스 메뉴 ([유틸리티] > 서비스)를 사용하여 다음과 같은 서비스 관련 작 업을 실행할 수 있습니다.

Service Menu					
Start User Cal	Hardware Solf Test	Front Panel	About	User Cal Status	
USEI Lai	36111631	Jell Test	озынозсоре	Status	

- "사용자 보정을 실행하려면 "276 페이지
- "하드웨어 자가 테스트를 실행하려면 "278 페이지
- "전면 패널 자가 테스트를 실행하려면 "279 페이지
- "오실로스코프 정보를 표시하려면" 279 페이지
- "사용자 보정 상태를 표시하려면 "279 페이지

오실로스코프의 유지보수 및 서비스와 관련된 기타 정보는 다음 항목을 참조하 십시오.

- "오실로스코프를 청소하려면" 279 페이지
- " 보증 및 확장 서비스 상태를 확인하려면 " 279 페이지
- "Keysight 에 문의하려면 " 280 페이지
- "계측기를 보내려면 "280 페이지

20 유틸리티 설정

사용자 보정을 실행하려면

사용자 보정 실행 :

- 2년마다 또는 4000 시간 작동 후
- 주변 온도가 보정 온도보다 10°C 이상 높은 경우
- 최대한의 측정 정확도를 원할 경우

사용량, 환경 조건, 다른 계측기 사용 경험을 통해 더 짧은 사용자 보정 주기가 필요한지 여부를 판단할 수 있습니다.

사용자 보정 기능은 내부 자체 정렬 루틴을 실행하여 오실로스코프의 신호 경로 를 최적화합니다.이 루틴은 내부적으로 생성된 신호를 사용하여 채널 감도,오 프셋,트리거 파라미터에 영향을 주는 회로를 최적화합니다.

사용자 보정을 실행하면 보정 증명서 (CoC) 의 효력이 상실됩니다. NIST(National Institute of Standards and Technology) 추적 시스템이 필요 할 경우, 추적 가능한 소스를 사용하여 *Keysight InfiniiVision 2000/3000 X 시리즈 오실로스코프 서비스 가이드*에 있는 "성능 검증 " 절차를 수행하십시오.

사용자 보정을 실행하려면:

- 이 절차를 실행하기 전에 전면 및 후면 패널에서 MSO 의 디지털 채널 케이블 을 포함한 모든 입력을 분리하고 오실로스코프를 예열해야 합니다.
- 2 후면 패널 CAL 단추를 눌러 보정 보호 기능을 비활성화합니다.
- 3 오실로스코프 전면에서 각 아날로그 채널의 BNC 커넥터에 동일한 길이의 짧 은 (최대 12 인치) 케이블을 연결합니다. 2 채널 오실로스코프의 경우 동일 한 길이의 케이블 2 개, 4 채널 오실로스코프의 경우 동일한 길이의 케이블 4 개가 필요합니다.

사용자 보정을 실행할 때는 50W RG58AU 또는 동급 BNC 케이블을 사용하십시오.

2 채널 오실로스코프의 경우 BNC 티를 동일한 길이의 케이블에 연결하십시 오. 그런 다음 아래 나온 것처럼 BNC(f) 대 BNC(f) (배럴 커넥터라고도 함) 를 티에 연결하십시오.

그림 48 2 채널 오실로스코프용 사용자 보정 케이블

4 채널 오실로스코프의 경우 아래 나온 것처럼 BNC 티를 동일한 길이의 케 이블에 연결하십시오.그런 다음 아래 나온 것처럼 BNC(f) 대 BNC(f) (배럴 커넥터) 를 티에 연결하십시오.

그림 49 4 채널 오실로스코프용 사용자 보정 케이블

- 4 BNC 케이블 (최대 40 인치)을 후면 패널의 TRIG OUT 커넥터에서 BNC 배 럴 커넥터로 연결하십시오.
- 5 [Utility](유틸리티) 키를 누른 다음, 서비스 소프트키를 누릅니다.
- 6 사용자 보정 시작 소프트키를 눌러 자가 보정을 시작합니다.

하드웨어 자가 테스트를 실행하려면

[유틸리티] > 서비스 > 하드웨어 자가 테스트를 누르면 오실로스코프가 정상 적으로 작동하고 있음을 검증하는 일련의 내부 절차가 실행됩니다.

다음과 같은 경우에 하드웨어 자가 테스트를 실행하는 것이 좋습니다.

- 비정상 작동을 경험한 후
- 오실로스코프 오류를 더 자세히 설명하는 추가 정보가 필요할 경우
- 오실로스코프를 수리한 후 올바른 작동 여부를 확인하려는 경우

하드웨어 자가 테스트를 성공적으로 통과했다고 해서 오실로스코프의 기능이 100% 보장되는 것은 아닙니다. 하드웨어 자가 테스트는 오실로스코프의 정상 작동에 대해 80% 의 신뢰도 수준을 제공하도록 고안되었습니다. 전면 패널 자가 테스트를 실행하려면

[유틸리티] > 서비스 > 전면 패널 자가 테스트를 누르면 전면 패널의 키와 노브 뿐 아니라 오실로스코프 디스플레이까지 테스트할 수 있습니다.

화면에 표시되는 지침에 따르십시오.

오실로스코프 정보를 표시하려면

[도움말] > 오실로스코프 정보를 누르면 사용 중인 오실로스코프에 대한 정보 가 표시됩니다.

- 모델 번호.
- 일련 번호.
- 대역폭.
- 설치된 모듈.
- 소프트웨어 버전.
- 설치된 라이센스. "라이센스 로드 및 라이센스 정보 표시 " 302 페이지도 참 조하십시오.

사용자 보정 상태를 퓨시하려면

[유틸리티] > 서비스 > 사용자 보정 상태를 누르면 이전 사용자 보정의 요약 결 과와 보정 가능한 프로브의 프로브 보정 상태가 표시됩니다. 참고로 패시브 프 로브는 보정이 필요 없습니다. 결과: 사용자 보정 날짜 : 최종 사용자 보정 후 온도 변화 :

- 실패:
- 주석 : 프로브 보정 상태 :

오실로스코프를 청소하려면

- 1 계측기에서 전원을 분리합니다.
- 2 오실로스코프의 외부 표면을 중성세제와 젖은 부드러운 천으로 청소합니다.
- 3 계측기를 전원에 다시 연결하기 전에 완전히 말랐는지 확인합니다.

보증 및 확장 서비스 상태를 확인하려면

오실로스코프의 보증 상태를 확인하려면:

- 1 웹 브라우저에서 www.keysight.com/find/warrantystatus 로 이동합니다.
- 2 계측기 모델 번호와 일련 번호를 입력합니다.시스템에서 사용자 제품의 보 증 상태를 검색하고 결과를 표시합니다.시스템에서 사용자 제품의 보증 상 태를 찾지 못한 경우, 연락처를 선택하여 Keysight 담당자에게 문의하십시 오.

Keysight 에 문의하려면

Keysight 문의 방법에 대한 내용은 www.keysight.com/find/contactus 를 참조 하십시오.

계측기를 보내려면

오실로스코프를 Keysight 보내기 전에 가까운 Keysight 영업소 또는 서비스 대 리점에 추가적인 정보를 문의하십시오. Keysight 문의 방법에 대한 내용은 www.keysight.com/find/contactus 를 참조하십시오.

- 1 태그에 다음 정보를 기입하고 오실로스코프에 부착합니다.
 - 소유주 이름과 주소
 - 모델 번호
 - 일련 번호
 - 필요한 서비스 또는 고장에 대한 설명
- 2 오실로스코프에서 액세서리를 분리합니다.

고장 증상과 연관이 있을 경우에만 액세서리를 Keysight 보내십시오.

3 오실로스코프를 포장합니다.

원래의 포장 상자를 사용하거나, 운송 도중 계측기를 충분히 보호할 수 있는 재료를 사용하십시오.

4 포장 상자를 단단히 밀봉한 후 FRAGILE(취급주의)이라고 표시하십시오.

[빠른 실행] 키 구성

[Quick Action](빠른 실행) 키를 사용하면 자주 쓰는 반복적인 작업을 한 번의 키 누름으로 실행할 수 있습니다.

[Quick Action](빠른 실행) 키를 구성하려면:

1 [유틸리티] > 빠른 실행 > 작업을 누른 다음, 실행할 작업을 선택합니다.

- 꺼짐 을 선택하면 [Quick Action](빠른 실행) 키가 비활성화됩니다.
- 빠른 전체 측정 을 선택하면 모든 단일 파형 측정의 스냅샷이 포함된 팝 업이 표시됩니다. 소스 소프트키로 파형 소스(또한 측정 메뉴에서도 선택 소스가 됨)를 선택할 수 있습니다. 14 장, " 측정," 페이지 시작 197 쪽 을 참조하십시오.
- 빠른 인쇄 를 선택하면 현재 화면 이미지가 인쇄됩니다. 설정을 눌러 인 쇄 옵션을 설정할 수 있습니다. 19 장, "인쇄(화면)," 페이지 시작 259 쪽를 참조하십시오.
- 빠른 저장 을 선택하면 현재 이미지, 파형 데이터 또는 설정이 저장됩니다. 설정을 눌러 저장 옵션을 설정할 수 있습니다. 18 장, "저장 / 호출 (설정, 화면, 데이터)," 페이지 시작 247 쪽을 참조하십시오.
- 빠른 호출 을 선택하면 설정, 마스크 또는 기준 파형이 호출됩니다. 설정을 눌러 호출 옵션을 설정할 수 있습니다. 18 장, "저장 / 호출 (설정, 화면, 데이터)," 페이지 시작 247 쪽을 참조하십시오.
- 빠른 디스플레이 고정 을 선택하면 수집을 중단하지 않고도 디스플레이 를 고정할 수 있으며, 디스플레이가 고정되어 있는 경우에는 디스플레이 를 고정 해제할 수 있습니다. 자세한 내용은 "디스플레이를 고정하려면 " 127 페이지을 참조하십시오.
- 빠른 트리거 모드 를 선택하면 트리거 모드가 자동과 일반 사이에서 전 환됩니다 (" 자동 또는 일반 트리거 모드를 선택하려면 " 166 페이지 참조).
- 빠른 디스플레이 삭제 를 선택하면 디스플레이가 삭제됩니다 ("디스플 레이를 지우려면 "126 페이지 참조).

[Quick Action](빠른 실행) 키를 구성한 후에는 간단히 빠른 실행 키를 눌러 선 택한 작업을 실행할 수 있습니다

주석 추가

오실로스코프 디스플레이의 좌측 상단 모서리에 주석을 추가할 수 있습니다. 주 석은 문서화하기 위해 화면을 캡처하기 전 설명을 추가하는 데 유용합니다.

- 주석 추가 방법 :
- 1 오실로스코프의 전면 패널에서 [유틸리티]를 누릅니다.
- 2 유틸리티 메뉴에서 주석을 누릅니다.
- 3 주석 메뉴에서 주석을 눌러 주석을 활성화합니다.

- 4 편집을 누릅니다.
- 5 주석 편집 메뉴 :

- · 철자, ◆, ◆ 및 문자 삭제 소프트키를 사용하여 주석 텍스트를 입력합니다.
 - 철자 이 소프트키를 누르고 엔트리 노브를 돌리면 현재 위치의 문자 가 선택됩니다.
 - ◆ 이 소프트키를 누르면 문자가 입력되며 커서가 다음 문자 위치로 이동합니다.
 - ← 이 소프트키를 누르면 문자가 입력되며 커서가 이전 문자 위치로 이동합니다.
 - 문자 삭제 ◆ 또는 ◆ 소프트키를 원하는 문자가 강조 표시될 때까 지 누릅니다. 그런 다음 이 소프트키를 눌러 문자를 삭제합니다.
- 참 고 철자(및 기타) 문자 편집 소프트키를 사용하는 대신 연결된 USB 키보드를 사용할 수 있습니다 ..

- 삭제 소프트키를 사용해 모든 주석 문자를 삭제합니다.
- 확인을 눌러 주석 편집을 저장합니다.
- 6 텍스트 색상 소프트키를 누르고 엔트리 노브를 돌려 주석 색상을 선택합니다 .

흰색, 빨간색 또는 아날로그 채널, 디지털 채널, 산술 파형, 기준 파형이나 마커와 어울리는 색상을 선택할 수 있습니다.

- 7 배경색 소프트키를 누르고 엔트리 노브를 돌려 주석 배경색을 선택합니다.
 - 불투명 주석 배경이 단색입니다.
 - 반전 주석의 전경색과 배경색이 바뀝니다.
 - 투명 주석 배경이 단색입니다.

- 관련 항목 "BMP 또는 PNG 이미지 파일을 저장하려면 "249 페이지
 - "오실로스코프 화면을 인쇄하려면" 259 페이지

20 유틸리티 설정

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

21 웹 인터페이스

웹 인터페이스 액세스 / 286 Browser Web Control / 287 저장 / 호출 / 290 이미지 가져오기 / 292 식별 기능 / 293 Instrument Utilities / 294 암호 설정 / 295

Keysight InfiniiVision X 시리즈 오실로스코프에 DSOXLAN LAN/VGA 옵션 모듈이 설치된 경우, 웹 브라우저를 사용하여 오실로스코프의 내장 웹 서버에 액세스할 수 있습니다. 오실로스코프의 웹 인터페이스를 통해 다음과 같은 작업 이 가능합니다.

- 모델 번호, 일련 번호, 호스트 이름, IP 주소, VISA(주소) 연결 문자열 등 오실로스코프에 대한 정보 확인
- 원격 전면 패널을 사용하여 오실로스코프 제어
- 설정, 화면 이미지, 파형 데이터 및 마스크 파일 저장
- 설정 파일, 기준 파형 데이터 파일 또는 마스크 파일 호출
- 브라우저에서 화면 이미지 열기, 저장 또는 인쇄
- 식별 기능을 작동시켜 메시지가 표시되거나 전면 패널 표시등이 깜박거리도 록 함으로써 특정 계측기 식별
- 설치된 옵션, 펌웨어 버전 확인, 펌웨어 업그레이드 파일 설치, 보정 상태 확 인(계측기의 유틸리티 페이지에서)
- 오실로스코프의 네트워크 구성 확인 및 수정

또한 InfiniiVision X 시리즈 오실로스코프의 웹 인터페이스에서는 각 페이지에 도움말을 제공합니다.

웹 인터페이스를 사용하려면 먼저 오실로스코프를 네트워크에 배치하고 LAN 연결을 설정해야 합니다.

웹 인터페이스 액세스

오실로스코프의 웹 인터페이스에 액세스하려면 :

1 오실로스코프를 LAN 에 연결 ("LAN 연결을 구성하려면 "267 페이지 참조) 하거나 포인트 투 포인트 연결을 구성합니다 ("PC 에 대한 독립형 (포인트 투 포인트) 연결 "268 페이지 참조).

포인트 투 포인트 연결을 사용할 수는 있지만, 일반적인 LAN 연결을 사용하는 것이 선호되는 방식입니다.

2 웹 브라우저에 오실로스코프의 호스트 이름 또는 IP 주소를 입력합니다.

오실로스코프 웹 인터페이스의 초기 페이지가 표시됩니다.

웹 인터페이스 21

KEY TECH	YSIGHT INOLOGIES Oscilloscop	be	Support Products Keysight S Another web-enabled Instrumen from Keysight Technologies
Welcome Page Browser Web Control	Welcome to your Web-Enab MSC	– L XI	
Save/Recall	Information about this Web-E Instrument	MSO-X 2024A Oscilloscope	
Instrument Utilities	Description	Agilent MSOX2024A InfiniiVision - US50210029	
Configure Network	NetBIOS Name Multicast DNS Hostname	a-mx2024a-10029 a-mx2024a-10029 a-mx2024a-10029.local.	
Print Page	IP Address VISA TCP/IP Connect String	141.121.237.192 TCPIP0::141.121.237.192::INSTR	
uisrage	Advanced information Use the navigation bar on the left to a information. © Keysight Technologies, Inc. 2006-2	Identification: off on and related 2014	

Browser Web Control

웹 인터페이스의 Browser Web Control 페이지에서 다음에 액세스할 수 있습니다.

- 브라우저 기반 원격 전면 패널 ("브라우저 기반 원격 전면 패널 "288 페이지 참조).
- 원격 프로그래밍용 SCPI Command 창 애플릿 ("웹 인터페이스를 통한 원격 프로그래밍 " 288 페이지 참조).

브라우저 기반 원격 전면 패널

웹 인터페이스의 브라우저 기반 원격 전면 패널을 사용하여 오실로스코프를 조 작하려면 다음을 수행합니다.

- 1 오실로스코프의 웹 인터페이스에 액세스합니다 ("웹 인터페이스 액세스 "286 페이지 참조).
- 2 오실로스코프의 웹 인터페이스가 표시될 때 브라우저 웹 컨트롤을 선택한 다음 Remote Front Panel 을 선택합니다. 몇 초 후에 원격 전면 패널이 나타납니다.
- 3 일반적으로 오실로스코프의 전면 패널에서 누르는 키 또는 노브를 클릭합니다. 노브를 돌리는 데 사용할 수 있는 버튼이 추가되었습니다.

웹 인터페이스를 통한 원격 프로그래밍

참 그

PC 에 Java 가 설치되지 않은 경우, Sun Microsystems Java 플러그인을 설치 하라는 메시지가 표시됩니다. 웹 원격 프로그래밍 연산을 사용하려면 제어하는 PC 에 이 플러그인이 설치되어 있어야 합니다.
SCPI Command 창은 명령을 테스트하거나 소수의 명령을 대화형으로 입력하 는 데 유용합니다. 오실로스코프를 제어하는 자동화 프로그램을 작성하는 경우 , 일반적으로 Microsoft Visual Studio 와 유사한 프로그래밍 환경에서

Keysight IO 라이브러리를 사용하게 됩니다 ("Keysight IO 라이브러리를 사용 한 원격 프로그래밍 " 290 페이지 참조).

SCPI Commands 를 통해 원격 프로그래밍 명령을 오실로스코프에 보내려면 애 플릿 창

- 1 오실로스코프의 웹 인터페이스에 액세스합니다 ("웹 인터페이스 액세스 "286 페이지 참조).
- 2 오실로스코프의 웹 인터페이스가 표시되면 브라우저 웹 컨트롤을 선택한 후 원격 프로그래밍을 선택합니다.

SCPI Commands 애플릿이 브라우저 웹 페이지 내에 나타납니다.

				Suppo
KEY TECHN	SIGHT NOLOGIES	Oscilloscope		Anoth from K
Welcome Page Browser Web Control	Remote Pro	o <mark>gramming</mark> remote programming commands directly to your MSO-X 2024A oscilloscope usi se the <u>Programming Commands Quick Reference</u> . Commands Options	ng the to	ol below.
Save/Recall	Command *IDN? ** Successf > *IDN? < AGILENT T	ully connected to Agilent MSOX2024A InfiniiVision - US50210029 ECHNOLOGIES,MSO-X 2024A,US50210029,02.38.2014102201	**	Send
Instrument Utilities Configure Network				
Print Page				

Keysight IO 라이브러리를 사용한 원격 프로그래밍

SCPI Commands 애플릿 창에서 원격 프로그래밍 명령을 입력할 수 있는 반면, 자동 테스트 및 데이터 수집의 원격 프로그래밍은 일반적으로 계측기의 웹 인터 페이스와 별개인 Keysight IO 라이브러리를 사용하여 실행됩니다.

Keysight IO 라이브러리는 USB, LAN(LAN/VGA 옵션 모듈이 설치된 경우) 또는 GPIB(GPIB 옵션 모듈이 설치된 경우) 인터페이스를 통해 컨트롤러 PC 와 Keysight InfiniiVision 오실로스코프 사이의 통신을 지원합니다.

Keysight IO 라이브러리 패키지 연결 소프트웨어는 이러한 인터페이스를 통한 통신을 지원합니다. Keysight IO 라이브러리 패키지는 www.keysight.com/find/iolib 에서 다운로드할 수 있습니다.

원격 명령을 통해 오실로스코프를 제어하는 방법에 대한 설명은 오실로스코프 와 함께 제공되는 설명서 CD 에 포함되어 있는 *프로그래머 설명서*에 수록되어 있습니다. 이 문서는 Keysight 웹 사이트에서도 액세스할 수 있습니다.

오실로스코프 연결에 대한 자세한 내용은 *Keysight USB/LAN/GPIB 인터페이 스 연결 가이드*를 참조하십시오. *연결 가이드*의 인쇄 가능한 전자 사본이 필요 할 경우 웹 브라우저에서 www.keysight.com 에 접속하여 "Connectivity Guide(연결 가이드)" 를 검색하십시오.

저장/호출

오실로스코프의 웹 인터페이스를 통해 설정 파일, 화면 이미지, 파형 데이터 파 일 또는 마스크 파일을 PC 에 저장할 수 있습니다 ("웹 인터페이스를 통해 파일 저장 " 290 페이지 참조).

오실로스코프의 웹 인터페이스를 통해 PC 에서 설정 파일, 기준 파형 데이터 파 일 또는 마스크 파일을 호출할 수 있습니다 ("웹 인터페이스를 통한 파일 호출 " 291 페이지 참조).

웹 인터페이스를 통해 파일 저장

오실로스코프의 웹 인터페이스를 통해 설정 파일, 화면 이미지, 파형 데이터, 리스터 데이터 또는 마스크 파일을 PC 에 저장하려면:

- 1 오실로스코프의 웹 인터페이스에 액세스합니다 ("웹 인터페이스 액세스 "286 페이지 참조).
- 2 오실로스코프의 웹 인터페이스가 표시되면 초기 화면 왼쪽에 있는 저장 / 호
 출 탭을 선택합니다.

- 3 저장 링크를 클릭합니다.
- 4 저장 페이지에서:
 - a 저장하려는 파일의 이름의 입력합니다.
 - b 형식을 선택합니다.

KEY TECH		scope	(Support Pr Another web from Keysigh
Welcome Page	Save			
	Filename	scope		
Browser	Format	Setup (*.scp) -		
Web Control	New Acquisition Preview	Setup (*.scp) 8-bit Bitmap image (*.bmp) 24-bit Bitmap image (*.bmp) PNG, 24-bit image (*.png) CSV data (*.csv)		Save
Get Image		ASCII XY data (*.csv) Reference Waveform data (*.h5) Multi Channel Waveform data (*.h5) Binary data (*.bin) Lister data (*.csv)		
Utilities		WIDSK (.IIISK)]	

미리 보기를 클릭하면 오실로스코프의 현재 화면 이미지를 볼 수 있습니다 . 미리 보기 중 **새 수집** 확인란을 사용하면 미리 보기 전에 새로운 수집 작 업이 실행되도록 만들 수 있습니다.

일부 형식에서는 **설정 정보 저장**을 클릭하여 설정 정보를 ASCII.txt 형식 파일로 저장할 수 있습니다.

c 저장을 클릭합니다.

현재 수집 결과가 저장됩니다.

- d 파일 다운로드 대화 상자에서 저장을 클릭합니다.
- e 다른 이름으로 저장 대화 상자에서 파일을 저장할 폴더로 이동한 다음, 저 장을 클릭합니다.

웹 인터페이스를 통한 파일 호출

오실로스코프의 웹 인터페이스를 통해 PC 에서 설정 파일, 기준 파형 데이터 파일 또는 마스크 파일을 불러오려면:

21 웹 인터페이스

- 1 오실로스코프의 웹 인터페이스에 액세스합니다 ("웹 인터페이스 액세스 "286 페이지 참조).
- 2 오실로스코프의 웹 인터페이스가 표시되면 초기 화면 왼쪽에 있는 저장 / 호
 출 탭을 선택합니다.
- 3 호출 링크를 클릭합니다.
- 4 호출 페이지에서,
 - a 찾아보기 ... 를 클릭합니다.
 - b "파일 선택"대화 상자에서 불러오려는 파일을 선택한 다음 열기를 클릭 합니다.
 - c 기준 파형 데이터 파일을 불러오는 경우 기준 파형 위치를 선택하십시오.

			Support I
	YSIGHT INOLOGIES	Oscilloscope	Another we from Keysig
Welcome Page	Recall	Filename C:\Temp\web_interface\scope.h5	Browse
Browser Web Control	To Reference	R1 R2	Recall

d 호출을 클릭합니다.

이미지 가져오기

웹 인터페이스에서 오실로스코프의 화면을 저장 (또는 인쇄) 하려면

- 1 오실로스코프의 웹 인터페이스에 액세스합니다 ("웹 인터페이스 액세스 "286 페이지 참조).
- 2 오실로스코프의 웹 인터페이스가 표시되면 초기 화면 왼쪽에서 이미지 가져 오기 탭을 선택하십시오. 몇 초 후 오실로스코프의 화면 이미지가 표시됩니 다.
- 3 이미지를 마우스 오른쪽 버튼으로 클릭하고 화면을 다른 이름으로 저장 ... (또는 화면 인쇄 ...)을 누릅니다.

4 이미지 파일의 저장 위치를 선택하고 저장을 클릭합니다.

식별 기능

식별 웹 인터페이스 기능은 장비 랙에서 특정 계측기를 찾을 때 유용합니다.

- 1 오실로스코프의 웹 인터페이스에 액세스합니다 ("웹 인터페이스 액세스 "286 페이지 참조).
- 2 오실로스코프 웹 인터페이스의 초기 페이지가 표시되면 식별 켜기 라디오 버 튼을 선택합니다.

오실로스코프에 " 식별 " 메시지가 표시되며, 식별 **끄기**를 선택하거나 오실로 스코프에서 **확인** 소프트키를 눌러 계속 진행할 수 있습니다.

			Support Products Keysight Site
KEY TECH	VSIGHT NOLOGIES Oscillosco	be	Another web-enabled instrument from Keysight Technologies
Welcome	Welcome to your		
Page Browser Web Control	Web-Enat MS	oled Oscilloscope O-X 2024A	L
Save/Recall	Information about this Web-	nabled Instrument	
	Instrument	MSO-X 2024A Oscilloscope	
Get Image	Serial Number	US50210029	
হিন্দি Instrument	Description	Agilent MSOX2024A InfiniiVision - US50210029	
Utilities	DNS Hostname	141.121.237.192	
	NetBIOS Name	a-mx2024a-10029	
Network	Multicast DNS Hostname	a-mx2024a-10029.local.	
Print Page	IP Address	141.121.237.192	
Help with	VISA TCP/IP Connect String	TCPIP0::141.121.237.192::INSTR	
this Page	Advanced information	ldentification: 🔘 off 💿 on 🦟	식별 옵션
	Use the navigation bar on the left to a	access your oscilloscope and related	

Instrument Utilities

웹 인터페이스의 Instrument Utilities 페이지에서 다음과 같은 작업을 할 수 있 습니다.

- 설치된 옵션 확인.
- 펌웨어 버전 확인.
- 펌웨어 업그레이드 파일 설치.
- 보정 상태 확인 .

이러한 기능은 드롭다운 메뉴를 통해 선택할 수 있습니다.

KEY TECHN	SIGHT NOLOGIES	Oscilloscope	
Welcome Page	Instru	ment Utilities	
Browser Web Control	Insta Insta Firm Calib	Iled Options Vare Version ration Status talled Options	
Get Image	License	Description	Installed
	MSO	MSO	Yes
N SZ Instrument	MEMUP	Acq Memory Max	Yes
Utilities	EMBD	Embedded serial decode and trigger	Yes
	AUTO	Automotive serial decode and trigger	Yes
Network	СОМР	UART/RS232 serial decode and trigger	Yes
Print Page	SGM	Segmented Memory	Yes
	MASK	Mask limit testing	Yes
Help with this Page	BW20	200MHz Bandwidth	Yes
tris Page	BW10	100MHz Bandwidth	No
	EDK	Education kit license	Yes
	WAVEGEN	WaveGen license	Yes
	DVM	Digital Voltmeter	Yes
	ASV	ASV	Yes
	SCPIPS	Infiniium Mode	No
	RML	Remote Log	Yes

암호 설정

오실로스코프를 LAN 에 연결할 때마다 암호를 설정하는 것이 좋습니다. 암호 를 사용하면 다른 사용자가 웹 브라우저를 통해 오실로스코프에 액세스하여 파 라미터를 변경하는 것을 방지할 수 있습니다. 원격 사용자는 초기 화면, 네트워 크 상태 등을 볼 수는 있지만, 암호가 없으면 계측기를 조작하거나 설정을 변경 할 수 없습니다.

암호를 설정하려면 :

21 웹 인터페이스

- 1 오실로스코프의 웹 인터페이스에 액세스합니다 ("웹 인터페이스 액세스 "286 페이지 참조).
- 2 오실로스코프의 웹 인터페이스가 표시되면, 계측기 초기 화면에서 네트워크 구성 탭을 선택합니다.
- 3 구성 변경 버튼을 클릭합니다.

4 원하는 암호를 입력하고 변경 사항 적용을 클릭합니다.

Welcome Page	Modify Network	Configuration	
Browser Web Control	Undo Ch	anges LAN Reset	Apply Changes
Get Image	Parameter	Configured Value	Edit Configuration
	Settings may be configured u	sing the following:	
	Automatic	ON	OFF ON
Utilities IP	Settings to use in non automa	tic mode:	
Configure	IP Address	141.121.237.192	141.121.237.192
NetWork	Subnet Mask	255.255.248.0	255.255.248.0
Print Page	Default Gateway	141.121.232.1	141.121.232.1
Na Help with	ame service settings:	1	
this Page	Hostname	a-mx2024a-10029	a-mx2024a-10029 * Requires reboot to take effect.
	DNS Server	156.140.24.15	156.140.24.15
	Multicast DNS	ON	OFF ON
O	ther settings:		
	Description	Agilent MSOX2024A InfiniiVision - US50210029	Agilent MSOX2024A InfiniiVision - L *
	Password		Keysight
	GPIB Address	7	7
*Set	to blank for factory default valu	e	

암호로 보호되는 오실로스코프에 액세스할 때 사용자 ID 는 오실로스코프의 IP 주소입니다.

- 암호를 재설정 암호를 재설정하려면 다음 중 한 가지를 실행하십시오.
 - 오실로스코프 전면 패널의 키를 사용하여 [유틸리티] > I/O > LAN 재설정을 누릅니다.
 - 웹 브라우저를 사용하여 네트워크 구성 탭을 누르고, 구성 변경을 선택한 다음 암호를 지우고, 변경 사항 적용을 선택합니다.

하려면

21 웹 인터페이스

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

22 참조

사양 및 특성 / 299 측정 범주 / 299 환경 조건 / 301 프로브 및 액세서리 / 301 라이센스 로드 및 라이센스 정보 표시 / 302 소프트웨어 및 펌웨어 업데이트 / 304 2 진수 데이터 (.bin) 형식 / 305 CSV 및 ASCII XY 파일 / 311 승인 / 313

사양 및 특성

2000 X 시리즈 오실로스코프에 대한 최신 사양 및 특성은 다음 사이트에서 데 이터 시트를 참조하십시오. www.keysight.com/find/2000X-Series

측정 범주

- "오실로스코프 측정 범주" 299 페이지
- " 측정 범주 정의 " 300 페이지
- "최대 입력 전압 " 300 페이지

오실로스코프 측정 범주

InfiniiVision 오실로스코프는 측정 범주 II, III, IV 에 속하는 측정에 사용되도록 설계되지 않았습니다.

경 고 이 계측기는 지정된 측정 범주 내에서 측정하는 경우에만 사용하십시오 (CAT II, III, IV 의 경우 등급 미정). 순간 과전압은 허용되지 않습니다 .

측정 범주 정의

"Not rated for CAT II, III, IV" 측정 범주는 MAINS 에 직접 연결되지 않은 회 로에서 수행된 측정에 해당합니다. 주전원에서 분기되지 않은 회로와 특별히 보 호되는 (내부적으로) 주전원에서 분기된 회로에서 실행되는 측정을 예로 들 수 있습니다. 후자의 경우 과도 응력이 가변적이며, 그러한 이유로 장비의 과도 상 태 내구성이 사용자에게 고지됩니다.

측정 범주 II 에는 저전압 설비에 직접 연결된 회로에서 수행되는 측정이 포함됩 니다. 가정용 전자제품, 휴대용 툴 및 유사한 장비에서 실행되는 측정을 그 예 로 들 수 있습니다.

측정 범주 III 에는 건물 내 설비에서 수행되는 측정이 포함됩니다. 배전반, 회 로 차단기, 배선(케이블, 버스 바, 배선함, 스위치, 고정 설비의 소켓 콘센트 포함), 산업용 장비 및 고정 설비에 영구 연결되는 고정 모터를 포함한 기타 일 부 장비에서 실행되는 측정을 예로 들 수 있습니다.

측정 범주 IV 에는 저전압 설비의 소스에서 수행되는 측정이 포함됩니다. 전기 계량기, 일차 과전류 보호 장치 및 리플 제어 장치에 대한 측정을 예로 들 수 있 습니다.

최대 입력 전압

환경 조건

환경	실내 전용
주변 온도	작동 5 °C ~ +55 °C, 비작동 -40 °C ~ +71 °C
습도	작동 : +40 °C 이하에서 최고 80% RH. 최고 +50 °C 에서 최대 45% RH.
	비작동 : +40 °C 까지 최대 95% RH. 최고 +50 °C 에서 최대 45% RH
고도	작동 및 비작동 : 4,000 m(13,123 ft)
과전압 분류	이 제품은 코드 및 플러그 연결 방식 장비에서 흔히 사용되는 과전압 분류 II 를 준수하는 메인 전원을 사용하도록 설계되었습니다 .
공해 등급	InfiniiVision 2000/3000 X 시리즈 오실로스코프는 공해 등급 2(또 는 공해 등급 1) 의 환경에서 작동됩니다 .
공해 등급 정의	공해 등급 1: 공해가 없거나 건조한 비전도성 공해만 발생합니다 . 이 공해 등급은 작업에 아무런 영향이 없습니다 . 예 : 클린룸 또는 공조 시설이 운영되는 사무실 환경이 이에 속합니다 .
	공해 등급 2: 일반적으로 건조한 비전도성 공해만 발생합니다 . 때때 로 응결에 의해 일시적인 전도 현상이 발생할 수 있습니다 . 예 : 일 반 실내 환경 .
	공해 등급 3: 전도성 공해가 발생하거나 , 예상되는 응결로 인해 전 도성으로 변하게 되는 건조한 비전도성 공해가 발생합니다 . 예 : 지 붕이 있는 실외 환경 .

프로브 및 액세서리

2000 X 시리즈 오실로스코프와 호환되는 프로브 및 액세서리의 목록은 데이터 시트에서 참조하십시오. www.keysight.com/find/2000X-Series

2000 X 시리즈 오실로스코프는 BNC 커넥터 주변에 프로브를 식별할 수 있는 링이 없으므로, 사용자가 프로브 감쇠 계수를 수동으로 설정해야 합니다. " 아 날로그 채널 프로브 옵션 설정 " 63 페이지 단원을 참조하십시오.

관련 항목 프로브 및 액세서리에 대한 자세한 내용은 www.keysight.com 에서 다음 항목 을 참조하십시오.

• 프로브 및 액세서리 선택 가이드 (5989-6162EN)

22 참조

- InfiniiVision 오실로스코프 프로브 및 액세서리 선정 가이드 데이터 시트 (5968-8153EN)
- 오실로스코프 프로브의 호환성 정보, 설명서, 응용 프로그램 노트, 데이터시 트, 선택 안내서, SPICE 모델 등에 대한 자세한 내용은 다음 프로브 리소스 센터를 참조하십시오. www.keysight.com/find/PRC
- 라이센스 로드 및 라이센스 정보 표시

라이센스 파일은 파일 탐색기를 통해 USB 저장 장치에서 로드됩니다 ("파일 탐 색기 " 269 페이지 참조).

라이센스 정보는 다른 오실로스코프 정보와 함께 표시됩니다 ("오실로스코프 정보를 표시하려면 " 279 페이지 참조).

라이센스 및 기타 이용 가능한 오실로스코프 옵션에 관한 자세한 내용은 다음을 참조하십시오 .

- "사용 가능한 라이센스 옵션 " 302 페이지
- " 기타 사용 가능한 옵션 " 304 페이지
- "MSO 로 업그레이드 " 304 페이지

사용 가능한 라이센스 옵션

오실로스코프를 서비스 센터로 보내지 않고도 다음과 같은 많은 라이센스 옵션 을 손쉽게 설치할 수 있습니다. 설치할 수 있는 옵션은 모델에 따라 다를 수 있 습니다. 자세한 내용은 데이터시트를 참조하십시오.

표4 사용 가능한 라이센스 옵션

라이센스	설명	모델 번호 구입 후 , 참고
D2000AUTA	2000 X- 시리즈용 자동차 소프트웨어 라이센스 AUTO 및 MASK 를 교체합니다 .	D2000AUTA 주문 (DSOX2AUTO 및 DSOX2MASK 교체).
D2000GENA	2000 X- 시리즈용 범용 소프트웨어 라이센스 EMBD, COMP, MASK 를 교체합니다 .	D2000GENA 주문 (DSOX2EMBD, DSOX2COMP, DSOX2MASK 교체).
AUTO	자동차용 직렬 트리거링 및 분석 (CAN,LIN).	D2000AUTA 주문 (DSOX2AUTO 및 기타 교체).

표4 사용 가능한 라이센스 옵션 (continued)

라이센스	설명	모델 번호 구입 후 , 참고
COMP	컴퓨터 직렬 트리거링 및 분석 (RS232/422/485/UART).	D2000GENA 주문 (DSOX2COMP 및 기타 교체).
	RS232(Recommended Standard 232) 를 포함 한 다양한 UART(Universal Asynchronous Receiver/Transmitter) 프로토콜에 대한 트리거 및 디코드 기능을 제공합니다 .	
DVM	디지털 전압계 모든 아날로그 채널을 사용하여 세 자릿수의 전 압과 다섯 자릿수의 주파수 측정값을 알려줍니다	현재 표준입니다 .
EDK	교육용 키트 교육 환경에 필요한 실험 가이드 / 자습서 및 오 실로스코프 데모 터미널에서 사용되는 교육용 신 호를 제공합니다 .	현재 표준입니다 .
EMBD	임베디드 직렬 트리거링 및 분석 (I2C, SPI).	D2000GENA 주문 (DSOX2EMBD 및 기타 교체).
MASK	마스크 한계 테스트 마스크와 테스트 파형을 만들어 마스크를 준수하 는지 판단할 수 있습니다 .	D2000GENA 또는 D2000AUTA 주문 (DSOX2MASK 포함 및 교체).
mem4M	메모리 업그레이드 . 총 메모리 깊이를 표시합니다 (4Mpts 인터리브).	DSOX2PLUS 주문 (이전 DSOX2MEMUP 포함).
MSO	MSO(혼합 신호 오실로스코프). DSO 를 MSO 로 업그레이드합니다 . 8 개의 디지털 채널이 추가됩니다 . 아무런 하드 웨어도 설치할 필요가 없습니다 .	DSOX2MSO 주문 . 디지털 프로브 케이블 키트가 MSO 라 이센스와 함께 제공됩니다 .
PLUS		DSOX2PLUS 주문 .
RML	원격 명령 기록	현재 표준입니다 .

22 참조

표 4 사용 가능한 라이센스 옵션 (continued)

라이센스	설명	모델 번호 구입 후 , 참고
SGM	세그멘트 메모리 . 신호의 " 비활성 " 상태가 캡처되는 것을 방지함 으로써 간헐적인 신호 또는 버스트 신호를 뛰어 난 분해능으로 캡처할 수 있습니다 .	DSOX2PLUS 주문 (이전 DSOX2SGM 포함).
WAVEGEN	파형 발생기 .	DSOX2WAVEGEN 주문 .

기타 사용 가능한 옵션

표5 교정 옵션

옵션	주문
A6J	ANSI Z540 규격 교정

MSO 로 업그레이드

라이센스를 설치하여 원래 MSO(혼합 신호 오실로스코프)로 주문되지 않은 오 실로스코프의 디지털 채널을 활성화할 수 있습니다. 혼합 신호 오실로스코프에 는 아날로그 채널과 함께 8 개의 시간 상관 디지털 타이밍 채널이 있습니다.

라이센싱을 통해 오실로스코프를 업그레이드하기 위한 정보는 해당 지역 Keysight Technologies 영업소에 문의하거나 www.keysight.com/find/2000X-Series 를 참조하십시오.

소프트웨어 및 펌웨어 업데이트

Keysight 는 때때로 자사 제품에 대한 소프트웨어 및 펌웨어 업데이트를 발표합 니다. 사용 중인 오실로스코프에 해당하는 펌웨어 업데이트를 검색하려면 웹 브 라우저에서 www.keysight.com/find/2000X-Series-sw 로 이동하십시오.

현재 설치된 소프트웨어와 펌웨어를 확인하려면 [도움말]>오실로스코프 정 보를 누르십시오. 펌웨어 업데이트 파일을 다운로드한 후에, 파일 탐색기를 사용하여 USB 저장 장치에 저장하고 파일을 로드하거나 ("파일 탐색기 " 269 페이지 참조), 오실로 스코프 웹 인터페이스의 Instrument Utilities 페이지를 사용할 수 있습니다 ("Instrument Utilities" 294 페이지 참조).

2 진수 데이터 (.bin) 형식

2 진수 데이터 형식에서는 파형 데이터가 2 진수 형식으로 저장되며 해당 데이 터를 설명하는 데이터 헤더가 제공됩니다.

데이터가 2 진수 형식이므로 파일 크기가 ASCII XY 형식보다 약 5 배 작습니다

소스가 하나 이상 켜져 있으면 연산 함수를 제외하고 표시되는 모든 소스가 저 장됩니다.

세그먼트 메모리를 사용할 경우에는 각 세그먼트가 별도의 파형으로 처리됩니다. 채널의 모든 세그먼트가 저장된 후,다음(더 높은 번호) 채널의 모든 세그 먼트가 저장됩니다.이 작업은 표시되는 채널이 모두 저장될 때까지 계속됩니다

오실로스코프가 피크 검출 수집 모드인 경우 최소값 및 최대값 파형 데이터 포 인트가 별도의 파형 버퍼에 파일로 저장됩니다. 최소값 데이터 포인트가 먼저 저장된 다음 최대값 데이터 포인트가 저장됩니다.

BIN 데이터 - 세 모든 세그먼트를 저장할 때 각 세그먼트에 고유한 파형 헤더가 부여됩니다 ("2 그먼트 메모리 진수 헤더 형식 " 306 페이지 참조). 사용

BIN 파일 형식에서는 데이터가 다음과 같이 표시됩니다.

- 채널 1 데이터 (모든 세그먼트)
- 채널 2 데이터 (모든 세그먼트)
- 채널 3 데이터 (모든 세그먼트)
- 채널 4 데이터 (모든 세그먼트)
- 디지털 채널 데이터 (모든 세그먼트)
- 연산 파형 데이터 (모든 세그먼트)

모든 세그먼트를 저장하지 않는 경우에는 파형의 수가 활성 채널의 수와 같습니 다 (연산 및 디지털 채널 포함, 각 디지털 포드마다 최대 7 개의 파형). 모든 세 그먼트를 저장하는 경우에는 파형의 수가 활성 채널 수에 수집된 세그먼트의 수 를 곱한 값과 같습니다.

MATLAB에서 2 진수 데이터 활용

InfiniiVision 오실로스코프의 2 진수 데이터를 MathWorks MATLAB® 으로 가 져올 수 있습니다. Keysight 웹 사이트 www.keysight.com/find/2000X-Series-examples 에서 적절한 MATLAB 기 능을 다운로드할 수 있습니다.

Keysight 는 MATLAB 의 작업 디렉터리에 복사해야 하는 .m 파일을 제공합니 다. 기본 작업 디렉터리는 C:₩MATLAB7₩work 입니다.

- 2 진수 헤더 형식
- 파일 헤더 2 진수 파일에는 하나의 파일 헤더만 존재하며, 파일 헤더는 다음과 같은 정보 로 구성됩니다.

쿠키	파일이 Keysight 2 진수 데이터 파일 형식임을 나타내는 2 바이트 문 자 AG
버전	파일 버전을 나타내는 2 바이트
파일 크기	파일에 포함된 바이트의 수에 해당하는 32 비트 정수
파형 수	파일에 저장된 파형의 수에 해당하는 32 비트 정수

파형 헤더 파일에 2개 이상의 파형이 저장될 수 있으며, 저장된 각 파형마다 파형 헤더가 부속됩니다.세그먼트 메모리를 사용할 경우에는 각 세그먼트가 별도의 파형으 로 처리됩니다.파형 헤더에는 파형 데이터 헤더에 이어 저장되는 파형 데이터 의 유형에 대한 정보가 포함됩니다.

헤더 크기	헤더에 포함된 바이트의 수에 해당하는 32 비트 정수
파형 유형	파일에 저장된 파형의 유형에 해당하는 32 비트 정수
	• 0 = 알 수 없음
	• 1 = 일반
	• 2 = 피크 검출
	• 3 = 평균
	• 4 = InfiniiVision 오실로스코프에는 사용되지 않음
	• 5 = InfiniiVision 오실로스코프에는 사용되지 않음
	• 6 = 로직

파형 버퍼 수	데이터를 읽는 데 필요한 파형 버퍼의 수에 해당하는 32 비트 정수			
포인트	데이터에 포함된 파형 포인트의 수에 해당하는 32 비트 정수			
카운트	평균과 같은 수집 모드를 사용하여 파형이 생성될 때 파형 기록 내 각 시간 버킷의 히트 수에 해당하는 32 비트 정수 . 예를 들어 , 평균 을 사용할 때 4회 카운트는 파형 기록 내 모든 파형 데이터 포인트가 최소 4회 평균화되었음을 나타냅니다 . 기본값은 0 입니다 .			
X 표시 범위	표시되는 파형의 X 축 지속 시간에 해당하는 32 비트 부동소수 . 시 간 영역 파형의 경우 , 표시 전반에 걸친 시간의 지속 시간이 됩니다 . 값이 0 이라면 아무런 데이터도 수집되지 않은 것입니다 .			
X 표시 기원	디스플레이의 왼쪽 에지에서 X 축 값에 해당하는 64 비트 배수 . 시 간 영역 파형의 경우 , 표시가 시작될 때의 시간이 됩니다 . 이 값은 배정도 64 비트 부동소수로 처리됩니다 . 값이 0 이라면 아무런 데이 터도 수집되지 않은 것입니다 .			
X 증분	X 축상 데이터 포인트 사이의 지속 시간에 해당하는 64 비트 배수 . 시간 영역 파형의 경우 , 포인트 사이의 시간이 됩니다 . 값이 0 이라 면 아무런 데이터도 수집되지 않은 것입니다 .			
X 기원	데이터 기록에 포함된 첫 데이터 포인트의 X 축 값에 해당하는 64 비 트 배수 . 시간 영역 파형의 경우 , 첫 포인트의 시간이 됩니다 . 이 값 은 배정도 64 비트 부동소수로 처리됩니다 . 값이 0 이라면 아무런 데이터도 수집되지 않은 것입니다 .			
X 단위	수집된 데이터의 X 값에 해당하는 측정 단위를 식별하는 32 비트 정 수. • 0 = 알 수 없음 • 1 = 전압 • 2 = 초 • 3 = 상수 • 4 = 전류 • 5 = dB • 6 = Hz			
Y 단위	수집된 데이터의 Y 값에 해당하는 측정 단위를 식별하는 32 비트 정 수 . 사용 가능한 값은 위 X 단위 아래에 열거되어 있습니다 .			
날짜	16 바이트 문자 배열로 , InfiniiVision 오실로스코프에서는 공백으로 유지됨			
시간	16 바이트 문자 배열로 , InfiniiVision 오실로스코프에서는 공백으로 유지됨			

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

22 참조

프레임	MODEL#:SERIAL# 형식으로 표시되는 오실로스코프의 모델 번호 와 일련 번호에 해당하는 24 바이트 문자 배열			
파형 라벨	파형에 할당된 라벨이 포함된 16 바이트 문자 배열			
시간 태그	64 비트 배수로 , 복수의 세그먼트를 저장할 때만 사용됩니다 (세그 먼트 메모리 옵션 필요). 이는 최초 트리거 이후의 시간 (단위 : 초) 입니다 .			
세그먼트 인덱 스	32 비트 무부호 정수 . 세그먼트 번호이며 , 복수의 세그먼트를 저장 할 때만 사용됩니다 .			

파형 데이터 헤 파형에 2개 이상의 데이터 세트가 있을 수 있습니다. 각 파형 데이터 세트에는 더 파형 데이터 헤더가 부속됩니다. 파형 데이터 헤더는 파형 데이터 세트에 대한 정보로 구성됩니다. 이 헤더는 데이터 세트 바로 앞에 저장됩니다.

파형 데이터 헤 더 크기	파형 데이터 헤더의 크기에 해당하는 32 비트 정수
버퍼 유형	파일에 저장된 파형 데이터의 유형에 해당하는 16 비트 쇼트 (short) • 0 = 알 수 없는 데이터 • 1 = 일반 32 비트 부동 데이터 • 2 = 최대 부동 데이터 • 3 = 최소 부동 데이터 • 4 = InfiniiVision 오실로스코프에는 사용되지 않음 • 5 = InfiniiVision 오실로스코프에는 사용되지 않음 • 6 = 디지털 무부호 8 비트 문자 데이터 (디지털 채널용)
포인트당 바이 트	데이터 포인트당 바이트의 수에 해당하는 16 비트 쇼트
버퍼 크기	데이터 포인트를 유지하는 데 필요한 버퍼의 크기에 해당하는 32 비 트 정수

2 진수 데이터 읽기 예제 프로그램

2 진수 데이터를 읽을 수 있는 예제 프로그램을 찾으려면 웹 브라우저에서 www.keysight.com/find/2000X-Series-examples에 접속하여 "2진수 데이터 읽기 예제 프로그램 "을 선택하십시오.

2 진수 파일의 예

단일 수집 복수 다음 그림에 복수 아날로그 채널의 단일 수집 결과인 2 진수 파일이 나와 있습니 아날로그 채널 다.

단일 수집 전체 다음 그림에 로직 채널의 모든 포드가 저장된 단일 수집 결과인 2 진수 파일이 포드 로직 채널 나와 있습니다.

한 아날로그 채 널에 대한 세그 먼트 메모리 수 집

한 아날로그 채 다음 그림에 한 아날로그 채널에 대한 세그먼트 메모리 수집 결과인 2 진수 파일 널에 대한 세그 이 나와 있습니다.

CSV 및 ASCII XY 파일

- "CSV 및 ASCII XY 파일 구조 " 312 페이지
- "CSV 파일 내의 최소 및 최대값 " 312 페이지

22 참조

CSV 및 ASCII XY 파일 구조

CSV 또는 ASCII XY 형식에서는 **길이** 컨트롤을 사용하여 세그먼트당 포인트 수 를 선택할 수 있습니다. 모든 세그먼트는 CSV 파일 또는 각 ASCII XY 데이터 파일에 포함됩니다.

예: 길이 컨트롤을 1000 포인트로 설정한 경우 세그먼트당 1000 포인트 (스프 레드시트의 행)가 저장됩니다. 모든 세그먼트를 저장할 때 헤더 행이 3 개가 있 으므로 첫 번째 세그먼트에 대한 데이터는 행 4 에서 시작됩니다. 두 번째 세그 먼트의 데이터는 행 1004 에서 시작됩니다. 시간 열은 첫 번째 세그먼트에서 발 생한 트리거 이후의 시간을 나타냅니다. 상단 행은 선택한 세그먼트당 포인트 수를 나타냅니다.

BIN 파일이 CSV 또는 ASCII XY 보다 더 효율적인 데이터 전송 형식입니다. 빠 른 데이터 전송이 필요할 경우 이 파일 형식을 사용하십시오.

CSV 파일 내의 최소 및 최대값

최소 또는 최대 측정을 실행하는 경우, 측정 디스플레이에 표시되는 최소 및 최 대값이 CSV 파일 내에 나타나지 않을 수 있습니다.

설명: 오실로스코프의 샘플링 속도가 4 GSa/s 일 때, 250 ps 마다 샘플이 수집됩니다 . 수평 스케일이 10 us/div 로 설정되었다면, 100 us 분량의 데이터가 표시됩니 다 (화면 전체에 10 개의 눈금이 있으므로). 오실로스코프에서 수집하는 샘플 의 총 수를 찾으려면:

100 us x 4 GSa/s = 400K 샘플

오실로스코프는 640 픽셀 열을 사용하여 이 400K 의 샘플을 표시해야 합니다. 오실로스코프는 400K 샘플을 640 픽셀 열에 맞게 소멸시키며, 이 소멸 작업은 주어진 열에 표시되는 모든 포인트의 최소 및 최대값을 추적합니다. 이 최소 및 최대값이 해당 화면 열에 표시됩니다.

수집된 데이터를 줄여 측정 및 CSV 데이터와 같은 다양한 분석 요구에 사용할 수 있는 기록을 만드는 데 이와 유사한 처리가 사용됩니다. 이 분석 기록 (또는 *측정 기록*)은 640 보다 훨씬 크며, 실제로 최대 65536 포인트가 포함될 수 있 습니다. 하지만 수집된 포인트의 수가 65536 개를 초과하는 경우, 일종의 소멸 이 필요합니다. CSV 기록을 생성하는 데 사용되는 소멸자는 기록 내의 각 포인 트가 나타내는 모든 샘플의 최적 예상치를 제공하도록 구성됩니다. 따라서 최소 및 최대값이 CSV 파일 내에 나타나지 않을 수 있습니다.

승인

표6 타사 소프트웨어

소프트웨어	라이센스 ¹			
7-zip	Copyright (C) 1999-2016 Igor Pavlov.	GNU LGPL + unRAR 제한		
Boost Libraries	Copyright © 2008 Beman Dawes, Rene Rivera	Boost Software License (BSL-1.0)		
CUPS	CUPS 및 CUPS Imaging 라이브러리는 Apple Inc. 에서 개 발되었으며 GNU Library General Public License(LGPL) 버 전 2 에 따라 라이센스를 받았습니다 . Copyright 2007-2016 by Apple Inc.	GNU Library General Public License ("LGPL"), 버전 2		
HDF5	HDF5 는 The HDF Group 과 일리노이 대학 (Urbana-Champaign 소재) 의 NCSA(미국 국립 슈퍼컴퓨 터 활용센터) 에서 개발되었습니다 .	BSD-style open source		
	Copyright 2006-2016 by The HDF Group. Copyright 1998-2006 by the Board of Trustees of the University of Illinois.			
jQuery	Copyright 2012 jQuery Foundation and other contributors http://jquery.com/	MIT License		
libmspack	< 저작권 : © 2003-2013 Stuart Caie 소스 코드는 타사 또는 Keysight 를 통해 얻을 수 있습니다 . Keysight 는 소스 배포에 소요되는 물리적인 비용을 청구할 수 있습니다 .			
libpng	ng Copyright (c) 1998-2002,2004,2006-2016 Glenn Randers-Pehrson (버전 0.96 Copyright (c) 1996, 1997 Andreas Dilger) (버전 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)			
mDNSResponder mDNSResponder 라이브러리는 Apple Inc. 에서 개발되었 으며 Apache License 버전 2.0 에 따라 라이센스를 받았습 니다. Copyright (c) 1997-2016 Apple Inc. All rights reserved		Apache License, 버 전 2.0		

표 6 타사 소프트웨어 (continued)

소프트웨어	설명 및 저작권	라이센스 ¹
noVNC	Copyright (C) 2011 Joel Martin <github@martintribe.org> 소스 코드는 타사 또는 Keysight 를 통해 얻을 수 있습니다 . Keysight 는 소스 배포에 소요되는 물리적인 비용을 청구할 수 있습니다 .</github@martintribe.org>	Mozilla Public License - MPL
RealVNC	Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved. 이 소프트웨어는 무료이며, Free Software Foundation 에 서 배포하는 GNU General Public License 의 조건에 따라 라이센스의 버전 2 또는 (사용자 선택에 따라) 이후 버전을 재배포 및 / 또는 수정할 수 있습니다. 이 소프트웨어는 유용하게 사용되리라는 기대 하에, 하지만 상품성 또는 특정 목적에 대한 적합성을 포함하여 일체의 보 증 없이 배포됩니다. 자세한 내용은 GNU General Public License 를 참조하십시오. 소스 코드는 타사 또는 Keysight 를 통해 얻을 수 있습니다. Keysight 는 소스 배포에 소요되는 물리적인 비용을 청구할 수 있습니다.	GNU General Public License
Tabber	Copyright (c) 2006 Patrick Fitzgerald	MIT License
TCLAP	Copyright (c) 2003 Michael E. Smoot	MIT License
time_ce	Copyright (C) 2002 Michael Ringgaard. All rights reserved.	MIT License
U-Boot	(C) Copyright 2000 - 2013 Wolfgang Denk, DENX Software Engineering, wd@denx.de. 소스 코드는 타사 또는 Keysight 를 통해 얻을 수 있습니다 . Keysight 는 소스 배포에 소요되는 물리적인 비용을 청구할 수 있습니다 .	GNU General Public License(GPL 또는 GPLv2)
WCELIBCEX	파일 저작권은 파일 작성자가 보유합니다 . WCELIBCEX 프로젝트의 첫 번째 버전용으로 생성된 파일은 (c) 2006 Taxus SI Ltd., http://www.taxussi.com.pl 이 저 작권을 소유합니다 . 자세한 내용은 소스 파일 헤더의 주석을 참조하십시오 .	MIT License

표6 타사 소프트웨어 (continued)

소프트웨어	설명 및 저작권	라이센스 ¹				
websockify	Copyright 2010 Joel Martin(github.com/kanaka) 소스 코드는 타사 또는 Keysight 를 통해 얻을 수 있습니다 . Keysight 는 소스 배포에 소요되는 물리적인 비용을 청구할 수 있습니다 .	Lesser or Library General Public License 버전 3.0(LGPLv3)				
zlib Copyright (C) 1995-2013 Jean-loup Gailly and Mark zlib license Adler						
- ¹ 이 라이센스는 Keysight InfiniiVision oscilloscopes manuals CD-ROM 에 있습니다 .						

제품 마케팅 및 규정 정보

이 기호는 2000/3000 X 시리즈 오실로스코프에서 사용됩니다.

기호	설명
	주의 , 감전의 위험이 있음
\land	주의 , 해당 설명서 참조
X	이 기호는 2005 년 8 월 13 일 현재 EU 법에 따른 의무사항인 전기 및 전자 장비 별도 수거를 나타냅니다. 모든 전기 및 전자 장비는 폐기 시 일반 쓰레기와 분리되어야 합니다(WEEE 지침 2002/96/EC 참조).
40	정상 사용 중에 어떠한 위험하거나 유해 물질 성분이 누출 또 는 악화되지 않을 것으로 예상되는 기간을 나타냅니다 . 예상 되는 제품의 유효 수명은 40 년입니다 .
	RCM 마크는 Australian Communications and Media Authority 의 등록 상표입니다 .

기호	설명	
ICES/NMB-001	CE 마크는 European Community 의 등록 상표입니다 .	
LCE ISM GRP 1-A	ICES / NMB-001 Cet appareil ISM est conforme a la norme NMB du Canada. 이것은 제품이 캐나다 산업 간섭 - 유발 장 비 표준 (Interference-Causing Equipment Standard(ICES-001)) 을 준수함을 의미하는 마크입니다.	
	또한 산업 과학 및 의학 Group 1, Class A 제품임도 의미하는 기호입니다 (CISPR 11, 조항 4).	
€ c us	CSA 마크는 CSA International 의 등록 상표입니다 .	
KCC-REM-ATI-	대한민국 인증 (KC) 마크 ; 마크의 식별자 코드 형식은 다음과 같습니다 .	
1ADSOX3000A	MSIP-REM-YYY-ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	

독일 소음 요구 이 계측기는 장비의 소음 선언에 대한 독일 규정을 준수할 것임에 대한 선언입 사항 준수 니다 (Laermangabe nach der Maschinenlaermrerordnung -3.GSGV Deutschland).

음향 소음 방출 /Geraeuschemission					
LpA <70dB	LpA <70dB				
작업자 위치	am Arbeitsplatz				
정상 위치	normaler Betrieb				
ISO 7779 당	nach DIN 45635 t.19				

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

23 CAN/LIN 트리거링 및 시 리얼 디코드

CAN 신호 설정 / 317 CAN 트리거링 / 319 CAN 시리얼 디코드 / 321 LIN 신호 설정 / 325 LIN 트리거링 / 327 LIN 시리얼 디코드 / 329

CAN/LIN 트리거링 및 직렬 디코드 옵션은 라이센스가 활성화되어 있습니다.

CAN 신호 설정

설정은 오실로스코프를 CAN 신호에 연결하고, 신호 메뉴를 사용하여 신호 소 스, 임계 전압 레벨, 보드 속도, 샘플 포인트를 지정하는 작업으로 구성됩니다.

오실로스코프를 CAN 신호를 캡처하도록 설정하려면 시리얼 디코드 메뉴에 표 시되는 **신호** 소프트키를 사용하십시오.

- 1 [Label](라벨)을 눌러 라벨을 켭니다.
- 2 [Serial](시리얼)을 누릅니다.
- 3 모드 소프트키를 누른 다음 CAN 트리거 유형을 선택합니다.
- 4 신호 소프트키를 눌러 CAN 신호 메뉴를 엽니다.

5 소스를 누른 다음, CAN 신호에 사용할 채널을 선택합니다.

CAN 소스 채널의 라벨은 자동 설정됩니다.

6 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 CAN 신호 임계 전압 레벨 을 선택합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코드 슬롯으로 설정하면 트리거 레벨이 됩니다.

7 보드 소프트키를 누른 다음, 엔트리 노브를 돌려 CAN 버스 신호와 일치하는 보드 속도를 선택합니다.

CAN 보레이트는 10 kb/s~5 Mb/s까지 사전 정의된 보레이트로 설정하거나 10.0 kb/s~4 Mb/s 까지 100 b/s 단위의 사용자 정의 보레이트로 설정할 수 있습니다. 4 Mb/s~5 Mb/s 사이에서 소수점 단위의 사용자 정의 보레이트는 허용되지 않습니다.

기본 보드 속도는 125 kb/s 입니다.

사전 정의된 선택 사항 중 CAN 버스 신호에 일치하는 항목이 없다면 **사용자** 정의를 선택한 다음, 유저보드 소프트키를 누르고 엔트리 노브를 돌려 보드 속도를 입력하십시오.

8 샘플 포인트 소프트키를 누른 다음, 엔트리 노브를 돌려 위상 세그먼트 1 과 2 사이에서 버스 상태가 측정될 포인트를 선택합니다. 이는 비트 시간 내에 서 비트 값이 캡처되는 포인트를 제어합니다.

- 9 신호 소프트키를 누르고 CAN 신호의 유형과 극성을 선택합니다. 그러면 소 스 채널의 채널 라벨이 자동으로 설정됩니다.
 - CAN_H 실제 CAN_H 차동 버스

 Differential(H-L) — 차동 프로브를 사용하여 아날로그 소스 채널에 연결 된 CAN 차동 버스 신호 프로브의 양극 리드를 우세하게 높은 CAN 신호 (CAN_H) 에 연결하고, 음극 리드를 우세하게 낮은 CAN 신호 (CAN_L) 에 연결하십시오.

우세한 낮음 신호 :

- **Rx** CAN 버스 송수신기에서 나오는 수신 신호
- Tx CAN 버스 송수신기에서 나오는 송신 신호
- CAN_L 실제 CAN_L 차동 버스 신호
- Differential(L-H) 차동 프로브를 사용하여 아날로그 소스 채널에 연결 된 CAN 차동 버스 신호 프로브의 양극 리드를 우세하게 낮은 CAN 신호 (CAN_L) 에 연결하고, 음극 리드를 우세하게 높은 CAN 신호 (CAN_H) 에 연결하십시오.

CAN 트리거링

CAN 신호를 캡처하도록 오실로스코프를 설정하려면 "CAN 신호 설정 " 317 페이지을 참조하십시오.

CAN(Controller Area Network) 트리거는 CAN 버전 2.0A 및 2.0B 신호에 대 한 트리거를 지원합니다.

다음은 CAN_L 신호 유형에 있는 CAN 메시지 프레임입니다.

Bus Idle		Arbitration Field	Control Field	Data Field	CRC Field	ACK Field	EOF	Intermission
	ŧ.							

SOF edge

CAN 신호를 캡처하도록 오실로스코프를 설정한 후 :

- 1 [Trigger](트리거)를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 CAN 신 호가 디코딩되는 시리얼 슬롯 (시리얼 1)을 선택합니다.

트리거 메뉴			
📀 트리거	🕤 트리거:		
S ₁ (CAN)	오류	+	

- 3 트리거 소프트키를 누른 다음, 엔트리 노브를 돌려 트리거 조건을 선택합니 다.
 - SOF 프레임 시작 오실로스코프가 프레임 시작에서 트리거합니다.
 - 원격 프레임 ID(RTR) 오실로스코프가 지정한 ID 의 원격 프레임에 트리 거합니다. 비트 소프트키를 눌러 ID 를 선택할 수 있습니다.
 - 데이터 프레임 ID(~RTR) 오실로스코프가 지정한 ID 에 일치하는 데이 터 프레임에 트리거합니다. 비트 소프트키를 눌러 ID 를 선택할 수 있습니 다.
 - 원격 또는 데이터 프레임 ID 오실로스코프가 지정한 ID 에 일치하는 원 격 또는 데이터 프레임에 트리거합니다. 비트 소프트키를 눌러 ID 를 선택 할 수 있습니다.
 - 데이터 프레임 ID 및 데이터 오실로스코프가 지정한 ID 와 데이터에 일 치하는 데이터 프레임에 트리거합니다. 비트 소프트키를 눌러 ID 를 선택 하고 데이터 바이트의 수 및 값을 설정할 수 있습니다.
 - 오류 프레임 오실로스코프가 CAN 활성 오류 프레임에 트리거합니다.
 - 모든 오류 어떤 형태의 오류 또는 활성 오류가 발생하는 경우에 오실로 스코프가 트리거합니다.
 - 승인 오류 승인 비트가 역행성 (높음) 인 경우 오실로스코프가 트리거 합니다.
 - 오버로드 프레임 오실로스코프가 CAN 오버로드 프레임에 트리거합니 다.
- 4 ID 또는 데이터 값에 대한 트리거를 허용하는 조건을 선택한 경우, 비트 소프 트키와 CAN 비트 메뉴를 사용하여 해당 값을 지정하십시오.

CAN 비트 메뉴 소프트키 사용에 대한 자세한 내용을 보려면, 해당 소프트키 를 누른 채로 유지하면 내장 도움말이 표시됩니다.

- **줌** 모드를 사용하면 디코딩된 데이터를 손쉽게 탐색할 수 있습니다.
- 참 고 이 설정으로 안정적인 트리거를 얻을 수 없는 경우 CAN 신호가 너무 느려 오실 로스코프가 자동 트리거를 실행하는 상태일 수 있습니다. [Mode/Coupling](모드 / 커플링) 키를 누른 다음 모드 소프트키를 눌러 트리거 모드를 자동에서 일반으로 설정하십시오.

참 고

CAN 시리얼 디코드를 표시하려면 "CAN 시리얼 디코드 " 321 페이지를 참조하 십시오 .

CAN 시리얼 디코드

CAN 신호를 캡처하도록 오실로스코프를 설정하려면 "CAN 신호 설정 " 317 페이지을 참조하십시오.

착 고

CAN 트리거링 설정은 "CAN 트리거링 " 319 페이지을 참조하십시오.

CAN 시리얼 디코딩을 설정하려면 :

1 [Serial](시리얼)을 눌러 시리얼 디코드 메뉴가 표시되도록 합니다.

- 2 디스플레이에 디코드 라인이 표시되지 않은 경우 [Serial](시리얼) 키를 눌러서 켜십시오.
- 3 오실로스코프가 중지된 상태라면 [Run/Stop](실행/정지) 키를 눌러 데이 터를 수집 및 디코드하십시오.
- 참 고 이 설정으로 안정적인 트리거를 얻을 수 없는 경우 CAN 신호가 너무 느려 오실 로스코프가 자동 트리거를 실행하는 상태일 수 있습니다. [Mode/Coupling](모드 / 커플링) 키를 누른 다음 모드 소프트키를 눌러 트리거 모드를 자동에서 일반으로 설정하십시오.

수평 줌 창을 사용하면 디코딩된 데이터를 손쉽게 탐색할 수 있습니다.

- 관련 항목 "CAN 디코드 해석 " 322 페이지
 - "CAN 토털라이저 " 323 페이지
 - "CAN 리스터 데이터 해석 " 324 페이지
 - "리스터에서 CAN 데이터 검색 " 325 페이지

CAN 디코드 해석

- 프레임 ID 는 노란색 16 진수로 표시됩니다. 11 또는 29 비트의 프레임은 자 동으로 검출됩니다.
- 원격 프레임 (RMT) 은 녹색으로 표시됩니다.
- 데이터 길이 코드 (DLC) 는 데이터 프레임의 경우 파란색, 원격 프레임의 경 우 녹색으로 표시됩니다.
- 데이터 바이트는 데이터 프레임의 경우 흰색 16 진수로 표시됩니다.
- CRC(순환 중복 검사)는 유효할 경우 파란색 16 진수로 표시되며, 오실로스 코프의 하드웨어 디코드에서 수신되는 CRC 데이터 스트림과 다른 CRC 가 계산된 경우 빨간색으로 표시됩니다.
- 앵글 파형은 활성 버스를 나타냅니다 (패킷/프레임 내부).
- 중간 레벨 청색 라인은 유휴 버스를 나타냅니다.
- 프레임 경계 내에 충분한 공간이 없을 경우 디코딩된 텍스트가 관련 프레임의 끝부분에서 잘립니다.
- 분홍색 수직 막대는 디코딩을 보려면수평 스케일을 확장 (및 재실행)해야 함을 나타냅니다.
- 디코드 라인의 빨간색 점은 표시되지 않은 데이터가 있음을 나타냅니다. 정 보를 보려면 수평 스케일을 스크롤 또는 확장하십시오.

- 앨리어스가 적용된 버스 값 (샘플 부족 또는 중간 단계)은 분홍색으로 표시 됩니다.
- 알 수 없는 버스 값 (미정의 또는 오류 상태)은 "?" 라벨과 함께 빨간색으로 표시됩니다.
- 플래그 지정 오류 프레임은 "ERR" 라벨과 함께 빨간색으로 표시됩니다.

CAN 토털라이저

CAN 토털라이저는 버스 품질 및 효율성을 직접 측정하는 기능을 제공합니다. CAN 토털라이저는 총 CAN 프레임, 플래그 지정 오류 프레임, 오버로드 프레 임, 버스 사용률을 측정합니다.

FRAMES: 1342191940	OVLD: 26843597	70(20.0%) ERR: OC)0002587(0.0%)	UTIL: 23.6%	
•	모드	신호	CAN 리세트		리스터
	CAN	+	카운터		+

토털라이저는 항상 실행되며 (프레임 카운팅, 백분율 계산), CAN 디코드가 표 시될 때마다 표시됩니다. 토털라이저는 오실로스코프가 정지 (데이터를 수집하 지 않음)되었을 때에도 카운트를 계속합니다. [Run/Stop](실행/정지) 키를 눌러도 토털라이저에는 영향이 없습니다. 오버플로우 상태가 발생하면 카운터 에 OVERFLOW 라고 표시됩니다. 카운터는 CAN 리세트 카운터 소프트키를 눌 러 재설정할 수 있습니다.

- 프레임 유형 활성 오류 프레임 은 CAN 노드가 데이터 또는 원격 프레임에서 발생한 오류 상태를 인식하고 활성 오류 플래그를 지정하는 CAN 프레임입니다.
 - 오실로스코프가 활성 오류 플래그가 이어지지 않는 프레임에서 오류 상태를 감지하는 경우 부분 프레임 이 발생합니다. 부분 프레임은 카운트되지 않습 니다.
 - 카운터 FRAMES 카운터는 완료된 원격,데이터,오버로드 및 활성 오류 프레임의 총 수를 제공합니다.
 - OVLD 카운터는 완료된 오버로드 프레임의 총 수와 프레임 총 수에 대한 백 분율을 제공합니다.
 - ERR 카운터는 완료된 활성 오류 프레임의 총 수와 프레임 총 수에 대한 백분 율을 제공합니다.
 - UTIL(버스 로드) 표시기는 버스가 활성인 시간의 백분율을 측정합니다. 계 산은 약 400ms 마다 330ms 주기로 실행됩니다.

예: 데이터 프레임에 활성 오류 플래그가 있는 경우, FRAMES 카운터와 ERR 카운터 모두 증가됩니다. 데이터 프레임에 활성 오류가 아닌 오류가 있는 경우 에는 부분 프레임으로 취급되어 카운터가 증가되지 않습니다.

CAN 리스터 데이터 해석

CAN 리스터에는 표준 시간 열 이외에 다음과 같은 열이 포함되어 있습니다.

- ID 프레임 ID
- 유형 프레임 유형 (RMT 원격 프레임 또는 데이터)
- DLC 데이터 길이 코드
- 데이터 데이터 바이트
- CRC 순환 중복 검사
- 오류 빨간색으로 강조 표시됩니다. 오류는 확인 (Ack, A), 형식 (Fo) 또는 프레임 (Fr) 이 될 수 있습니다. 위 예처럼 서로 다른 유형의 오류가 "Fo,Fr" 와 같이 결합될 수 있습니다.

앨리어스가 적용된 데이터는 분홍색으로 강조 표시됩니다. 이 경우 수평 time/div 설정을 낮추고 다시 실행하십시오.
리스터에서 CAN 데이터 검색

오실로스코프의 검색 기능을 사용하여 리스터에서 특정 유형의 CAN 데이터를 검색하고 마킹할 수 있습니다. [Navigate](이동) 키 및 컨트롤을 사용하여 마 킹된 행을 탐색할 수 있습니다.

- 1 CAN 을 시리얼 디코드 모드로 선택한 상태에서 [Search](검색)을 누릅니다.
- 2 검색 메뉴에서 검색 소프트키를 누른 다음 엔트리 노브를 돌려 CAN 신호가 디코딩되는 시리얼 슬롯(시리얼 1 또는 시리얼 2)을 선택합니다.
- 3 검색을 누른 다음, 아래 옵션 중 하나를 선택하십시오.
 - 원격 프레임 ID(RTR) 지정한 ID 의 원격 프레임을 찾습니다. 비트 소프 트키를 눌러 ID 를 입력할 수 있습니다.
 - 데이터 프레임 ID(~RTR) 지정한 ID 에 일치하는 데이터 프레임을 찾습
 니다. 비트 소프트키를 눌러 ID 를 입력할 수 있습니다.
 - **원격 또는 데이터 프레임 ID** 지정한 ID 에 일치하는 원격 또는 데이터 프레임을 찾습니다. 비트 소프트키를 눌러 ID 를 입력할 수 있습니다.
 - 데이터 프레임 ID 및 데이터 지정한 ID 와 데이터에 일치하는 데이터 프 레임을 찾습니다. 비트 소프트키를 눌러 ID 길이, ID 값, 데이터 바이트 수, 데이터 값을 설정할 수 있습니다.
 - 오류 프레임 CAN 활성 오류 프레임을 찾습니다.
 - 모든 오류 모든 형식의 오류 또는 활성 오류를 찾습니다.
 - 오버로드 프레임 CAN 오버로드 프레임을 찾습니다.

데이터 검색에 대한 자세한 내용은 "리스터 데이터 검색 "120 페이지을 참조하 십시오.

[Navigate](이동) 키와 컨트롤 사용에 대한 자세한 내용은 "타임 베이스 탐색 " 55 페이지을 참조하십시오.

LIN 신호 설정

LIN(Local Interconnect Network) 신호 설정은 오실로스코프를 시리얼 LIN 신호에 연결하고, 신호 소스, 임계 전압 레벨, 보드 속도, 샘플 포인트 및 기타 LIN 신호 파라미터를 지정하는 작업으로 구성됩니다.

LIN 신호를 캡처하도록 오실로스코프를 설정하려면

1 [Label](라벨)을 눌러 라벨을 켭니다.

- 2 [Serial](시리얼)을 누릅니다.
- 3 모드 소프트키를 누른 다음 LIN 트리거 유형을 선택합니다.
- 4 신호 소프트키를 눌러 LIN 신호 메뉴를 엽니다.

5 소스 소프트키를 눌러 LIN 신호 라인에 연결된 채널을 선택합니다.

LIN 소스 채널의 라벨은 자동 설정됩니다.

6 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 LIN 신호 임계 전압 레벨 을 LIN 신호의 중간으로 설정합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코드 슬롯으로 설정하면 트리거 레벨이 됩니다.

- 7 보드 속도 소프트키를 눌러 LIN 보드 속도 메뉴를 엽니다.
- 8 보드 속도 소프트키를 누른 다음, 엔트리 노브를 돌려 LIN 버스 신호와 일치 하는 보드 속도를 선택합니다.

기본 보드 속도는 19.2 kb/s 입니다.

사전 정의된 선택 사항 중 LIN 버스 신호에 일치하는 항목이 없다면 **사용자** 정의를 선택한 다음 , 유저보드 소프트키를 누르고 엔트리 노브를 돌려 보드 속도를 입력하십시오.

LIN 보드 속도는 2.4 kb/s ~ 625 kb/s 사이에서 100 b/s 단위로 설정할 수 있습니다.

- 9 🚳 뒤로 / 위로 키를 눌러 LIN 신호 메뉴로 돌아갑니다.
- **10샘플 포인트** 소프트키를 누른 다음 엔트리 노브를 돌려 오실로스코프에서 비 트 값을 샘플링할 샘플 포인트를 선택합니다.

11 표준 소프트키를 누른 다음, 엔트리 노브를 돌려 측정에 사용할 LIN 표준을 선택합니다 (LIN 1.3 또는 LIN 2.0). LIN 1.2 신호의 경우 LIN 1.3 설정을 사용하십시오. LIN 1.3 설정은 신호가 2002 년 12 월 12 일자 LIN 사양의 A.2 섹션에 나온 "유효한 ID 값 표 "를 따르는 것으로 가정합니다. 신호가 위 표를 따르지 않을 경우 LIN 2.0 설정 을 사용하십시오.

12동기 단절 소프트키를 누르고 LIN 신호 내의 동기 단절을 정의하는 최소 클럭 수를 선택합니다.

LIN 트리거링

LIN 신호를 캡처하도록 오실로스코프를 설정하려면 "LIN 신호 설정 " 325 페이 지을 참조하십시오.

LIN 트리거링은 LIN 단일 와이어 버스 신호의 동기 단절 종료 시 (메시지 프레 임의 시작을 나타내는 표시) 상승 에지에서, 프레임 ID 또는 프레임 ID 및 데이 터에 트리거할 수 있습니다.

LIN 신호 메시지 프레임은 다음과 같이 표시됩니다.

Sync Sync Identifier	Data	Checksum
Break Field Break	Fields	Field

∱ Sync Break Exit

- 1 [Trigger](트리거)를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 CAN 신 호가 디코딩되는 시리얼 슬롯 (시리얼 1)을 선택합니다.

- 3 트리거: 소프트키를 누른 다음, 엔트리 노브를 돌려 트리거 조건을 선택합니다.
 - 동기 (동기 단절) 오실로스코프가 메시지 프레임의 시작을 표시하는 LIN 단일 와이어 버스 신호의 동기 단절 종료 시 상승 에지에서 트리거합 니다.

- ID(프레임 ID) 오실로스코프가 선택한 값과 동일한 ID 의 프레임이 감 지될 때 트리거합니다. Entry(엔트리) 노브를 사용하여 프레임 ID 의 값 을 선택할 수 있습니다.
- ID 및 데이터 (프레임 ID 및 데이터) 오실로스코프가 선택한 값과 동일 한 ID 와 데이터의 프레임이 감지될 때 트리거합니다. 프레임 ID 및 데이 터에 트리거하는 경우
 - 프레임 ID 값을 선택하려면 프레임 ID 소프트키를 누른 다음 Entry(엔 트리) 노브를 사용하십시오.

프레임 ID 값으로 "상관 없음 "을 입력하여 데이터 값에만 트리거하도 록 설정할 수도 있습니다.

 데이터 바이트의 수를 설정하고 그 값 (16 진수 또는 2 진수)을 입력하 려면 비트 소프트키를 눌러 LIN 비트 메뉴를 여십시오.

참 고

LIN 비트 메뉴 소프트키 사용에 대한 자세한 내용을 보려면 , 해당 소프트키를 누른 채로 유지하면 내장 도움말이 표시됩니다 . → , , LIN 디코딩에 대한 내용은 "LIN 시리얼 디코드 " 329 페이지를 참조하십시오 .

LIN 시리얼 디코드

LIN 신호를 캡처하도록 오실로스코프를 설정하려면 "LIN 신호 설정 " 325 페이 지을 참조하십시오.

- LIN 트리거링 설정은 "LIN 트리거링 " 327 페이지을 참조하십시오 .

LIN 시리얼 디코딩을 설정하려면 :

1 [Serial](시리얼)을 눌러 시리얼 디코드 메뉴가 표시되도록 합니다.

- 2 식별자 필드에 패리티 비트를 포함시킬 것인지를 선택합니다.
 - a 상위 2개 패리티 비트를 마스킹하려면 **패리티 보기** 소프트키 아래의 상자 가 선택되지 않은 상태인지 확인하십시오.
 - b 식별자 필드에 패리티 비트를 포함시키려면 **패리티 보기** 소프트키 아래의 상자가 선택된 상태인지 확인하십시오.
- 3 디스플레이에 디코드 라인이 표시되지 않은 경우 [Serial](시리얼) 키를 눌 러서 켜십시오.
- 4 오실로스코프가 중지된 상태라면 [Run/Stop](실행/정지) 키를 눌러 데이 터를 수집 및 디코드하십시오.

 참 고
 이 설정으로 안정된 트리거가 얻어지지 않는 경우, LIN 신호가 너무 느려 오실

 로스코프가 자동 트리거를 실행하고 있는 것일 수 있습니다.

 [Mode/Coupling](모드 / 커플링) 키를 누른 다음 모드 소프트키를 눌러 트리

 거 모드를 자동에서 일반으로 설정하십시오.

23 CAN/LIN 트리거링 및 시리얼 디코드

수평 줌 창을 사용하면 디코딩된 데이터를 손쉽게 탐색할 수 있습니다.

- 관련 항목 "LIN 디코드 해석 " 330 페이지
 - "LIN 리스터 데이터 해석 " 331 페이지
 - "리스터에서 LIN 데이터 검색 " 332 페이지

LIN 디코드 해석

- 앵글 파형은 활성 버스를 나타냅니다 (패킷 / 프레임 내부).
- 중간 레벨 청색 라인은 유휴 버스를 나타냅니다 (LIN 1.3 에 한함).
- 16 진수 ID 와 패리티 비트 (활성화된 경우)는 노란색으로 표시됩니다. 패리티 오류가 감지된 경우 16 진수 ID 와 패리티 비트 (활성화된 경우)가 빨 간색으로 표시됩니다.
- 디코딩된 16 진수 데이터 값은 흰색으로 표시됩니다.
- LIN 1.3 의 경우, 체크섬이 올바르면 파란색, 잘못되면 빨간색으로 표시됩니다. LIN 2.0 의 경우 체크섬은 항상 흰색으로 표시됩니다.
- 프레임 경계 내에 충분한 공간이 없을 경우 디코딩된 텍스트가 관련 프레임의 끝부분에서 잘립니다.
- 분홍색 수직 막대는 디코딩을 보려면 수평 스케일을 확장(및 재실행)해야 함을 나타냅니다.

- 디코드 라인의 빨간색 점은 표시되지 않은 데이터가 있음을 나타냅니다. 정 보를 보려면 수평 스케일을 스크롤 또는 확장하십시오.
- 알 수 없는 버스 값 (미정의 또는 오류 상태)은 빨간색으로 표시됩니다.
- 동기화 필드에 오류가 있을 경우 SYNC 가 빨간색으로 표시됩니다.
- 헤더가 표준에 지정된 길이를 초과한 경우 THM 이 빨간색으로 표시됩니다.
- 총 프레임 카운트가 표준에 지정된 길이를 초과한 경우 TFM 이 빨간색으로 표시됩니다 (LIN 1.3 에 한함).
- LIN 1.3 의 경우 웨이크업 신호는 파란색 WAKE 로 표시됩니다. 웨이크업 신호에 유효한 웨이크업 구분 문자가 이어지지 않을 경우, 웨이크업 오류가 감지되며 빨간색 WUP 로 표시됩니다.

LIN 리스터 데이터 해석

LIN 리스터에는 표준 시간 열 이외에 다음과 같은 열이 포함되어 있습니다.

- ID 프레임 ID
- 데이터 (LIN 1.3 에 한함) 데이터 바이트
- 체크섬 (LIN 1.3 에 한함)
- 데이터 및 체크섬 (LIN 2.0 에 한함)
- 오류 빨간색으로 강조 표시됩니다.

앨리어스가 적용된 데이터는 분홍색으로 강조 표시됩니다. 이 경우 수평 time/div 설정을 낮추고 다시 실행하십시오.

리스터에서 LIN 데이터 검색

오실로스코프의 검색 기능을 사용하여 리스터에서 특정 유형의 LIN 데이터를 검색하고 마킹할 수 있습니다. [Navigate](이동) 키 및 컨트롤을 사용하여 마 킹된 행을 탐색할 수 있습니다.

- 1 LIN 을 시리얼 디코드 모드로 선택한 상태에서 [Search](검색)을 누릅니다
- 2 검색 메뉴에서 검색 소프트키를 누른 다음 엔트리 노브를 돌려 LIN 신호가 디 코딩되는 시리얼 슬롯(시리얼 1 또는 시리얼 2)을 선택합니다.
- 3 검색을 누른 다음, 아래 옵션 중 하나를 선택하십시오.
 - ID 지정한 ID 의 프레임을 찾습니다. 프레임 ID 소프트키를 눌러 ID 를 선택할 수 있습니다.
 - ID 및 데이터 지정한 ID 와 데이터의 프레임을 찾습니다. 프레임 ID 소 프트키를 눌러 ID 를 선택하고, 비트 소프트키를 눌러 데이터 값을 입력합 니다.
 - 오류 모든 오류를 찾습니다.

데이터 검색에 대한 자세한 내용은 "리스터 데이터 검색 "120 페이지을 참조하 십시오.

[Navigate](이동) 키와 컨트롤 사용에 대한 자세한 내용은 "타임 베이스 탐색 " 55 페이지를 참조하십시오. Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

24 I2C/SPI 트리거링 및 시리 얼 디코드

I2C 신호 설정 / 333 I2C 트리거링 / 334 I2C 시리얼 디코드 / 338 SPI 신호 설정 / 342 SPI 트리거링 / 345 SPI 시리얼 디코드 / 347

I2C/SPI 트리거링 및 직렬 디코드 옵션은 라이센스가 활성화되어 있습니다.

한 번에 한 SPI 시리얼 버스만 디코딩할 수 있습니다.

I2C 신호 설정

I²C(Inter-IC bus) 신호 설정은 오실로스코프를 시리얼 데이터 (SDA) 라인과 시리얼 클럭 (SCL) 라인에 연결하고, 입력 신호 임계 전압 레벨을 지정하는 것 으로 구성됩니다.

오실로스코프를 I²C 신호를 캡처하도록 설정하려면 시리얼 디코드 메뉴에 표시 되는 **신호** 소프트키를 사용하십시오.

- 1 [Label](라벨)을 눌러 라벨을 켭니다.
- 2 [Serial](시리얼)을 누릅니다.

- 3 모드 소프트키를 누른 다음 I2C 트리거 유형을 선택합니다.
- 4 신호 소프트키를 눌러 I²C 신호 메뉴를 엽니다.

- 5 SCL(시리얼 클럭) 및 SDA(시리얼 데이터) 신호 모두에 대해,
 - a 오실로스코프 채널을 테스트 대상 장치 내의 신호에 연결합니다.
 - b SCL 또는 SDA 소프트키를 누른 다음 엔트리 노브를 돌려 신호를 적용할 채널을 선택합니다.
 - c 해당하는 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 신호 임계 전 압 레벨을 선택합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코 드 슬롯으로 설정하면 트리거 레벨이 됩니다.

데이터가 높은 클럭 사이클 전반에 걸쳐 안정적이어야 하며, 그렇지 않으 면 시작 또는 정지 조건(클럭이 높을 동안의 데이터 전환)으로 해석됩니 다.

소스 채널의 SCL 및 SDA 라벨은 자동으로 설정됩니다.

I2C 트리거링

I2C 신호를 캡처하도록 오실로스코프를 설정하려면 "I2C 신호 설정 " 333 페이 지을 참조하십시오.

I2C 신호를 캡처하도록 오실로스코프를 설정한 후에는 정지 / 시작 조건, 재시 작, 확인 누락, EEPROM 데이터 읽음 또는 특정 장치 주소와 데이터 값이 있는 읽기 / 쓰기 프레임에 트리거할 수 있습니다.

- 1 [Trigger] (트리거)를 누른 다음 I2C 트리거 유형을 선택합니다.
- 2 [Trigger](트리거)를 누릅니다.
- **3** 트리거 메뉴에서 **트리거** 소프트키를 누른 다음 엔트리 노브를 돌려 I²C 신호 가 디코딩되는 시리얼 슬롯(시리얼 1)을 선택합니다.

- 4 트리거: 소프트키를 누른 다음, 엔트리 노브를 돌려 트리거 조건을 선택합니다.
 - 시작 조건 SCL 클럭이 높음인 경우 SDA 데이터가 높음에서 낮음으로 전환될 때 오실로스코프가 트리거합니다. 트리거 편의상 (프레임 트리거 포함) 재시작도 시작 조건으로 처리됩니다.
 - 정지 조건 클럭 (SCL) 이 높음인 경우 데이터 (SDA) 가 낮음에서 높음
 으로 전환될 때 오실로스코프가 트리거합니다.

- 확인 누락 Ack SCL 클럭 비트 도중 SDA 데이터가 높음일 때 오실로스 코프가 트리거합니다.
- 확인 없음 주소 선택한 주소 필드의 확인이 거짓일 때 오실로스코프가 트리거합니다. R/W 비트는 무시됩니다.
- 재시작 정지 조건 전에 다른 시작 조건이 발생하면 오실로스코프가 트 리거합니다.
- EEPROM 데이터 읽기 트리거가 SDA 라인에서 읽기 비트 및 Ack 비트 앞에 있는 EEPROM 제어 바이트 값 1010xxx 를 찾습니다. 그런 다음 데 이터 소프트키와 데이터 지정 소프트키로 설정된 데이터 값과 한정자를 찾습니다. 이 이벤트가 발생하면 오실로스코프는 데이터 바이트 다음의 Ack 비트에 해당하는 클럭 에지에 트리거합니다. 이 데이터 바이트가 제어 바 이트 직후에 발생할 필요는 없습니다.

• 프레임 (Start: Addr7: Read: Ack: Data) 또는 프레임 (Start: Addr7: Write: Ack: Data)— 패턴 내의 모든 비트가 일치하는 경우, 오실로스코프가 17 번째 클럭 에지에서 7 비트 주소 지정 모드에 속한 읽기 또는 쓰기 프레임 에 트리거합니다. 트리거 편의상 재시작도 시작 조건으로 처리됩니다.

• 프레임 (Start: Addr7: Read: Ack: Data: Ack: Data2) 또는 프레임 (Start: Addr7: Write: Ack: Data: Ack: Data2)— 패턴 내의 모든 비트가 일치하는 경우, 오실로스코프가 26 번째 클럭 에지에서 7 비트 주소 지정 모드에 속 한 읽기 또는 쓰기 프레임에 트리거합니다. 트리거 편의상 재시작도 시작 조건으로 처리됩니다.

 10 비트 쓰기 — 패턴 내의 모든 비트가 일치하는 경우, 26 번째 클럭 에지 의 10 비트 쓰기 프레임에 오실로스코프가 트리거합니다. 프레임 형식은 다음과 같습니다.

프레임 (Start: Address byte 1: Write: Address byte 2: Ack: Data)

트리거 편의상 재시작도 시작 조건으로 처리됩니다.

5 오실로스코프를 EEPROM 데이터 읽기 조건에 트리거하도록 설정한 경우

데이터 지정 소프트키를 눌러 데이터가 **데이터** 소프트키로 설정된 데이터 값 셋트와 = (같음), ≠ (같지 않음), < (미만) 또는 > (초과)일 때 오실로스코 프가 트리거하도록 설정할 수 있습니다.

오실로스코프는 트리거 이벤트가 발견된 후 Ack 비트에 해당하는 클럭 에지 에 트리거합니다. 이 데이터 바이트가 제어 바이트 직후에 발생할 필요는 없 습니다. 오실로스코프는 현재 주소 읽기, 무작위 읽기 또는 순차 읽기 사이 클 동안 데이터 지정 및 데이터 소프트키에 정의된 기준을 만족하는 모든 데 이터 바이트에 트리거합니다.

- 6 오실로스코프를 7 비트 주소 읽기 또는 쓰기 프레임 조건, 10 비트 읽기 프레 임 조건에 트리거하도록 설정한 경우
 - a 주소 소프트키를 누르고 엔트리 노브를 돌려 7 비트 또는 10 비트 장치 주 소를 선택합니다.

선택할 수 있는 주소 범위는 16 진수 0x00 ~ 0x7F(7 비트) 또는 0x3FF(10 비트)입니다. 읽기 / 쓰기 프레임에서 트리거하는 경우, 오실 로스코프는 시작, 주소, 읽기 / 쓰기, 확인 및 데이터 이벤트가 발생한 후 에 트리거합니다.

주소에 상관 없음을 선택한 경우(0xXX 또는 0xXXX) 주소가 무시됩니다. 7 비트 주소 지정의 경우 17 번째 클럭에, 10 비트 주소 지정의 경우 26 번 째 클럭에 항상 트리거가 발생합니다.

b 데이터 값 소프트키를 누르고 엔트리 노브를 돌려 트리거할 8 비트 데이터 패턴을 선택합니다.

데이터 값은 0x00 ~ 0xFF(16 진수)의 범위에서 선택할 수 있습니다. 오 실로스코프는 시작, 주소, 읽기 / 쓰기, 승인 및 데이터 이벤트가 발생한 후에 트리거합니다. 데이터에 상관 없음 (0xXX)을 선택하면 데이터가 무시됩니다. 7 비트 주 소 지정의 경우 17 번째 클럭에, 10 비트 주소 지정의 경우 26 번째 클럭 에 항상 트리거가 발생합니다.

c 3 바이트 트리거를 선택한 경우, 데이터 2 값 소프트키를 누르고 엔트리 노브를 돌려 트리거할 8 비트 데이터 패턴을 선택합니다.

참 고 I2C 시리얼 디코드를 표시하려면 "I2C 시리얼 디코드 " 338 페이지를 참조하십 시오 .

I2C 시리얼 디코드

I2C 신호를 캡처하도록 오실로스코프를 설정하려면 "I2C 신호 설정 " 333 페이 지을 참조하십시오.

▶ - - I2C 트리거링 설정은 "I2C 트리거링 " 334 페이지을 참조하십시오 .

I2C 시리얼 디코딩을 설정하려면 :

1 [Serial](시리얼)을 눌러 시리얼 디코드 메뉴가 표시되도록 합니다.

- 2 7 비트 또는 8 비트 주소 크기를 선택합니다. 8 비트 주소 크기를 사용하면 R/W 비트가 주소 값의 일부로 포함되며, 7 비트 주소 크기를 선택하면 주소 값에서 R/W 비트가 제외됩니다.
- 3 디스플레이에 디코드 라인이 표시되지 않은 경우 [Serial](시리얼) 키를 눌 러서 켜십시오.
- 4 오실로스코프가 중지된 상태라면 [Run/Stop](실행/정지) 키를 눌러 데이 터를 수집 및 디코드하십시오.

 참 고
 이 설정으로 안정된 트리거가 얻어지지 않는 경우, I2C 신호가 너무 느려 오실

 로스코프가 자동 트리거를 실행하고 있는 것일 수 있습니다.

 [Mode/Coupling](모드 / 커플링) 키를 누른 다음 모드 소프트키를 눌러 트리

 거 모드를 자동에서 일반으로 설정하십시오.

수평 줌 창을 사용하면 수집된 데이터를 손쉽게 탐색할 수 있습니다.

- 관련 항목 "I2C 디코드 해석 " 339 페이지
 - "I2C 리스터 데이터 해석 " 340 페이지
 - "리스터에서 I2C 데이터 검색 " 341 페이지

I2C 디코드 해석

- 앵글 파형은 활성 버스를 나타냅니다 (패킷 / 프레임 내부).
- 중간 레벨 청색 라인은 유휴 버스를 나타냅니다.
- 디코딩된 16 진수 데이터에서 :
 - 주소 값은 프레임 시작 부분에 표시됩니다.
 - 쓰기 주소는 "W" 문자와 함께 밝은 파란색으로 표시됩니다.
 - 읽기 주소는 "R" 문자와 함께 노란색으로 표시됩니다.

- 재시작 주소는 "S" 문자와 함께 녹색으로 표시됩니다.
- 데이터 값은 흰색으로 표시됩니다.
- "A"는 확인 (낮음), "~A"는 확인 없음 (높음)을 나타냅니다.
- 프레임 경계 내에 충분한 공간이 없을 경우 디코딩된 텍스트가 관련 프레 임의 끝부분에서 잘립니다.
- 분홍색 수직 막대는 디코딩을 보려면 수평 스케일을 확장(및 재실행)해야 함을 나타냅니다.
- 디코딩 라인의 빨간색 점은 더 많은 데이터를 표시할 수 있음을 나타냅니다.
 데이터를 보려면 수평 스케일을 스크롤 또는 확장하십시오.
- 앨리어스가 적용된 버스 값 (샘플 부족 또는 중간 단계)은 분홍색으로 표시 됩니다.
- 알 수 없는 버스 값 (미정의 또는 오류 상태)은 빨간색으로 표시됩니다.

I2C 리스터 데이터 해석

I2C 리스터에는 표준 시간 열 이외에 다음과 같은 열이 포함되어 있습니다.

- 재시작 "X" 로 표시
- 주소 쓰기는 파란색, 읽기는 노란색으로 구분됨
- 데이터 데이터 바이트

• 확인 누락 — "X" 로 표시되며, 오류일 경우 빨간색으로 강조 표시됨

앨리어스가 적용된 데이터는 분홍색으로 강조 표시됩니다. 이 경우 수평 time/div 설정을 낮추고 다시 실행하십시오.

리스터에서 I2C 데이터 검색

오실로스코프의 검색 기능을 사용하여 리스터에서 특정 유형의 I2C 데이터를 검색하고 마킹할 수 있습니다. [Navigate](이동) 키 및 컨트롤을 사용하여 마 킹된 행을 탐색할 수 있습니다.

- 1 I2C 를 시리얼 디코드 모드로 선택한 상태에서 [Search](검색) 을 누릅니다
- 2 검색 메뉴에서 검색 소프트키를 누른 다음 엔트리 노브를 돌려 I2C 신호가 디 코딩되는 시리얼 슬롯(시리얼 1 또는 시리얼 2)을 선택합니다.
- 3 검색을 누른 다음, 아래 옵션 중 하나를 선택하십시오.
 - 확인 누락 Ack SCL 클럭 비트 중 SDA 데이터가 높음을 찾습니다.
 - 확인 없음 주소 선택한 주소 필드의 승인이 거짓일 때를 찾습니다. R/W 비트는 무시됩니다.
 - 재시작 정지 조건 전에 다른 시작 조건이 발생한 경우를 찾습니다.
 - EEPROM 데이터 읽기 SDA 라인에서 읽기 비트 및 Ack 비트 앞에 있는 EEPROM 제어 바이트 값 1010xxx 를 찾습니다. 그런 다음, 데이터 지정 (Data is) 소프트키와 데이터 소프트키로 설정된 데이터 값과 한정자를 찾 습니다.
 - 프레임 (Start:Address7:Read:Ack:Data) 패턴 내의 모든 비트가 일치하 는 경우 17 번째 클럭 에지에서 읽기 프레임을 찾습니다.
 - 프레임 (Start:Address7:Write:Ack:Data) 패턴 내의 모든 비트가 일치하 는 경우 17 번째 클럭 에지에서 쓰기 프레임을 찾습니다.
 - 프레임 (Start:Address7:Read:Ack:Data:Ack:Data2) 패턴 내의 모든 비 트가 일치하는 경우 26 번째 클럭 에지에서 읽기 프레임을 찾습니다.
 - 프레임 (Start:Address7:Write:Ack:Data:Ack:Data2) 패턴 내의 모든 비 트가 일치하는 경우 26 번째 클럭 에지에서 쓰기 프레임을 찾습니다.

데이터 검색에 대한 자세한 내용은 "리스터 데이터 검색 "120 페이지을 참조하 십시오.

[Navigate](이동) 키와 컨트롤 사용에 대한 자세한 내용은 "타임 베이스 탐색 " 55 페이지를 참조하십시오.

SPI 신호 설정

SPI(Serial Peripheral Interface) 신호 설정은 오실로스코프를 클럭, MOSI 데 이터, MISO 데이터 및 프레임 신호에 연결한 다음, 각 입력 채널의 임계 전압 레벨을 설정하고, 최종적으로 다른 신호 파라미터를 지정하는 것으로 구성됩니 다.

오실로스코프를 SPI 신호를 캡처하도록 설정하려면 시리얼 디코드 메뉴에 표시 되는 **신호** 소프트키를 사용하십시오.

- 1 [Label](라벨)을 눌러 라벨을 켭니다.
- 2 [Serial](시리얼)을 누릅니다.
- 3 모드 소프트키를 누른 다음 SPI 트리거 유형을 선택합니다.
- 4 신호 소프트키를 눌러 SPI 신호 메뉴를 엽니다.

5 클럭 소프트키를 눌러 SPI 클럭 메뉴를 엽니다.

SPI 클럭 메뉴				
📀 시간	- 입계값	÷	Ļ.	디스플레이 정보
2	1.44V	~		

SPI 클럭 메뉴에서,

a 클럭 소프트키를 누른 다음, 엔트리 노브를 돌려 SPI 시리얼 클럭 라인에 연결된 채널을 선택합니다.

소스 채널의 CLK 라벨은 자동으로 설정됩니다.

b 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 클럭 신호 임계 전압 레벨을 선택합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코 드 슬롯으로 설정하면 트리거 레벨이 됩니다.

c 기울기 소프트키 (▲ ≥)를 눌러 선택한 클럭 소스의 상승 에지 또는 하강 에지를 선택합니다. 이는 오실로스코프에서 시리얼 데이터의 고정 (latch)에 사용할 클럭 에지 를 결정하는 것입니다. 디스플레이 정보가 활성화된 경우, 그래픽이 클럭 신호의 현재 상태를 나타내도록 변경됩니다.

6 MOSI 소프트키를 눌러 SPI Master-Out Slave-In 메뉴를 엽니다.

SPI Master-Out Slave-	n 메뉴	
📀 MOSI EI OLEI	○ 임계값	디스플레이 정보
3	1.44V	

SPI Master-Out Slave-In 메뉴에서,

a MOSI 데이터 소프트키를 누른 다음, 엔트리 노브를 돌려 SPI 시리얼 데이 터 라인에 연결된 채널을 선택합니다. (선택한 채널이 꺼진 상태라면 켜 십시오.)

소스 채널의 MOSI 라벨은 자동으로 설정됩니다.

b 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 MOSI 신호 임계 전압 레벨을 선택합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코 드 슬롯으로 설정하면 트리거 레벨이 됩니다.

7 (옵션) MISO 소프트키를 눌러 SPI Master-In Slave-Out 메뉴를 엽니다.

SPI Master-In Slave-O	ut 메뉴	
🕤 MISO El OLEI	· 입계값	디스플레이 정보
4	1.44V	

SPI Master-In Slave-Out 메뉴에서,

a MISO 데이터 소프트키를 누른 다음, 엔트리 노브를 돌려 두 번째 SPI 시 리얼 데이터 라인에 연결된 채널을 선택합니다. (선택한 채널이 꺼진 상 태라면 켜십시오.)

소스 채널의 MISO 라벨은 자동으로 설정됩니다.

b 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 MISO 신호 임계 전압 레벨을 선택합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코 드 슬롯으로 설정하면 트리거 레벨이 됩니다.

8 CS 소프트키를 눌러 SPI 칩 선택 메뉴를 엽니다.

SPI 칩 선택 메뉴에서,

a 프레임 기준 소프트키를 눌러 어떤 클럭 에지가 시리얼 스트림 내의 첫 번 째 클럭 에지가 될 것인지 오실로스코프에서 결정하는 데 사용되는 프레임 신호를 선택합니다.

높음 칩 선택 (CS) 동안, 낮음 칩 선택 (~CS) 동안 또는 클럭 신호가 유휴 상태인 타임아웃 시간 후 등에 트리거하도록 오실로스코프를 설정할 수 있 습니다.

프레임 신호를 CS(또는 ~CS) 로 설정한 경우, CS(또는 ~CS) 신호가 낮음에서 높음 (또는 높음에서 낮음)으로 전환된 후에 나타나는 상승 또는 하강으로 정의된 첫 번째 클럭 에지가 시리얼 스트림의 첫 번째 클 럭이 됩니다.

칩 선택 — CS 또는 ~CS 소프트키를 누른 다음, 엔트리 노브를 돌려 SPI 프레임 라인에 연결된 채널을 선택합니다. 소스 채널의 라벨 (~CS 또는 CS) 은 자동으로 설정됩니다. 데이터 패턴 및 클럭 전환은 프레임 신호가 유효한 기간 동안 발생해야 합니다. 전체 데이터 패턴에서 프레 임 신호가 유효해야 합니다.

 프레임 신호를 타임아웃으로 설정한 경우, 오실로스코프가 시리얼 클 럭 라인에서 비활성 상태를 확인한 후에 자체 내부 프레임 신호를 생성 합니다. **클럭 타임아웃 — 프레임 기준**에서 **클럭 타임아웃** 소프트키를 선택한 다음, **타임아웃** 소프트키를 선택하고 엔트리 노브를 돌려 오실로스코 프에서 트리거할 데이터 패턴을 검색하기 전에 클럭 신호가 유휴 상태(전환이 일어나지 않음)여야 하는 최소 시간을 설정합니다.

타임아웃 값은 100 ns 에서 10 초 사이에서 설정할 수 있습니다.

- **프레임 기준** 소프트키를 누르면 **디스플레이 정보** 그래픽이 타임아웃 선택 사항 또는 칩 선택 신호의 현재 상태를 나타내도록 변경됩니다.
- b 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 칩 선택 신호 임계 전 압 레벨을 선택합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코 드 슬롯으로 설정하면 트리거 레벨이 됩니다.

디스플레이 정보가 활성화된 경우, 파형 다이어그램뿐 아니라 선택한 신호 소스 및 그 임계 전압 레벨에 대한 정보까지 화면에 표시됩니다.

SPI 트리거링

SPI 신호를 캡처하도록 오실로스코프를 설정하려면 "SPI 신호 설정 " 342 페이 지을 참조하십시오.

SPI 신호를 캡처하도록 오실로스코프를 설정한 후에, 프레임의 시작 부분에서 발생하는 데이터 패턴에 트리거할 수 있습니다. 시리얼 데이터 문자열은 4 ~ 32 비트 길이가 되도록 지정할 수 있습니다.

SPI 트리거 유형을 선택하고 **디스플레이 정보**를 활성화하면, 프레임 신호, 클 럭 기울기, 데이터 비트 수, 데이터 비트 값의 현재 상태를 보여주는 그래픽이 표시됩니다.

- 1 [Trigger](트리거)를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 SPI 신호 가 디코딩되는 시리얼 슬롯 (시리얼 1)을 선택합니다.

3 트리거 설정 소프트키를 눌러 SPI 트리거 설정 메뉴를 엽니다.

- 4 트리거 소프트키를 누른 다음, 엔트리 노브를 돌려 트리거 조건을 선택합니다.
 - MOSI(Master-Out, Slave-In) 데이터 MOSI 데이터 신호에 트리거하는 경우
 - MISO(Master-In, Slave-Out) 데이터 MISO 데이터에 트리거하는 경우
- 5 비트 수 소프트키를 누르고 엔트리 노브를 돌려 시리얼 데이터 문자열에 포함 될 비트 수 (비트 수)를 설정합니다.

문자열의 비트 수는 4 비트에서 64 비트 사이로 설정할 수 있습니다. 시리얼 문자열의 데이터 값은 파형 영역의 MOSI/MISO 데이터 문자열에 표시됩니다

- 6 MOSI/MISO 데이터 문자열내의 각 비트에 대해 :
 - a 비트 소프트키를 누른 다음, 엔트리 노브를 돌려 비트 위치를 선택합니다.

엔트리 노브를 돌리면 파형 영역에 표시된 데이터 문자열에서 해당 비트가 강조 표시됩니다.

b 01 X 소프트키를 눌러 비트 소프트키에 선택된 비트를 0(낮음), 1(높음) 또는 X(상관 없음)으로 설정합니다.

모든 비트 설정 소프트키를 누르면 데이터 문자열 내의 모든 비트가 **01** X 소 프트키의 값으로 설정됩니다.

SPI 디코드에 대한 내용은 "SPI 시리얼 디코드 " 347 페이지를 참조하십시오.

SPI 시리얼 디코드

SPI 신호를 캡처하도록 오실로스코프를 설정하려면 "SPI 신호 설정 " 342 페이 지을 참조하십시오.

차 그 SPI 트리거링 설정은 "SPI 트리거링 " 345 페이지을 참조하십시오 .

SPI 시리얼 디코딩을 설정하려면 :

1 [Serial](시리얼)을 눌러 시리얼 디코드 메뉴가 표시되도록 합니다.

- 2 워드 크기 소프트키를 누른 다음 엔트리 노브를 돌려 워드에 포함시킬 비트 수를 선택하십시오.
- 3 비트 순서 소프트키를 누른 다음 엔트리 노브를 돌려 시리얼 디코딩 파형과 리스터에서 사용되는 데이터를 표시할 때 사용되는 비트 순서, 최상위 비트 우선 (MSB) 또는 최하위 비트 우선 (LSB) 을 선택할 수 있습니다.
- 4 디스플레이에 디코드 라인이 표시되지 않은 경우 [Serial](시리얼) 키를 눌러서 켜십시오.
- 5 오실로스코프가 중지된 상태라면 [Run/Stop](실행/정지) 키를 눌러 데이 터를 수집 및 디코드하십시오.
- 참 고
 이 설정으로 안정된 트리거가 얻어지지 않는 경우, SPI 신호가 너무 느려 오실

 로스코프가 자동 트리거를 실행하고 있는 것일 수 있습니다.

 [Mode/Coupling](모드 / 커플링) 키를 누른 다음 모드 소프트키를 눌러 트리

 거 모드를 자동에서 일반으로 설정하십시오.

수평 줌 창을 사용하면 수집된 데이터를 손쉽게 탐색할 수 있습니다.

- 관련 항목 "SPI 디코드 해석 " 349 페이지
 - "SPI 리스터 데이터 해석 " 350 페이지
 - "리스터에서 SPI 데이터 검색 " 350 페이지

SPI 디코드 해석

- 앵글 파형은 활성 버스를 나타냅니다 (패킷 / 프레임 내부).
- 중간 레벨 청색 라인은 유휴 버스를 나타냅니다.
- 프레임에 포함된 클럭 수는 프레임 위 오른쪽에 밝은 파란색으로 표시됩니다
- 디코딩된 16 진수 데이터 값은 흰색으로 표시됩니다.
- 프레임 경계 내에 충분한 공간이 없을 경우 디코딩된 텍스트가 관련 프레임의 끝부분에서 잘립니다.
- 분홍색 수직 막대는 디코딩을 보려면 수평 스케일을 확장(및 재실행)해야 함을 나타냅니다.
- 디코드 라인의 빨간색 점은 표시되지 않은 데이터가 있음을 나타냅니다. 정 보를 보려면 수평 스케일을 스크롤 또는 확장하십시오.
- 앨리어스가 적용된 버스 값 (샘플 부족 또는 중간 단계)은 분홍색으로 표시 됩니다.
- 알 수 없는 버스 값 (미정의 또는 오류 상태)은 빨간색으로 표시됩니다.

SPI 리스터 데이터 해석

1	5.0	OV/	2	5.00'	V/ (3 5.	00V/	4	5.00	V/			34	.005		218.	4s/		정	7	SPI	1	1.	44V
	사건		N	AOSE							MIS											A .	KEYS	IGHT
	-9.	872r	ns F	FF	F 7F	EF	49	4C 4	45 4E	54	03	06	00	00 (00 (0 00	0 00	D 00)	4	· 1	<u>, v</u>	TECHNO	LOGIES
	-6.	<u>.590</u>	ns F	F.							06									_	::		수집	::
-	-5.	850	TIS F	<u>+ U</u>	2						105	<u>+</u>	40	F D	4							_	일반	
	-4.	000	IIS F			75	75				02	10	40	00 1	4F 00					_		5	.00MSa	/s
7	1 0	130m	s F	F			71				105	10	00	00 1	00					- 1	"			
	1.7	70ms	s F	F 0	2						05	FF								_	::		채넉	::
	2.9	947ms	s F	FF	F FF						02	20	21							_	nc	_		10.0.1
	5.4	10ms	sР	FF	F E7						03	20	00							-				10.0-1
М	າດເມ			: 70																	Inc			10.0.1
1910	551.1																				Inc			10.0-1
	الملاحد																			-1	00			10.0.1
Ē																								
		- A 7	11	ΛΛ	ΛA	Λſ	111	11	n n	n n	aaai	104	MAR	IAA	ΛΛI	144	aar	IAA	ΛN	11	ſI –			
Ŧ																_	_							
													-+ ++	[]			<u> </u>							
Ţ								_					_											
		٦																40	CL K	'C				
ę.					EE	-				E		-				76		- 40	76	ч				
-1		\succ			03)				0		\rightarrow	<u>'</u>			/1 00			00	-()				
					03)				.0			0			00			ψυ					
리	스터	메뉴																			_			
	<u></u> כ	스플리	케이			스크	들		-	탁대/·	축소			실행	취소				곱션					
	ļ	5 ₁ (SP	미)			리스	터			선택/	사항		4	박대/	축소				+					

SPI 리스터에는 표준 시간 열 이외에 다음과 같은 열이 포함되어 있습니다.

• 데이터 — 데이터 바이트 (MOSI 및 MISO)

앨리어스가 적용된 데이터는 분홍색으로 강조 표시됩니다. 이 경우 수평 time/div 설정을 낮추고 다시 실행하십시오.

리스터에서 SPI 데이터 검색

오실로스코프의 검색 기능을 사용하여 리스터에서 특정 유형의 SPI 데이터를 검색하고 마킹할 수 있습니다. [Navigate](이동) 키 및 컨트롤을 사용하여 마 킹된 행을 탐색할 수 있습니다.

- 1 SPI를 시리얼 디코드 모드로 선택한 상태에서 [Search](검색) 을 누릅니다
- 2 검색 메뉴에서 검색 소프트키를 누른 다음 엔트리 노브를 돌려 SPI 신호가 디 코딩되는 시리얼 슬롯(시리얼 1 또는 시리얼 2)을 선택합니다.
- 3 검색을 누른 다음, 아래 옵션 중 하나를 선택하십시오.
 - MOSI(Master-Out, Slave-In) 데이터 MOSI 데이터를 검색하는 경우
 - MISO(Master-In, Slave-Out) 데이터 MISO 데이터를 검색하는 경우

4 비트 소프트키를 눌러 SPI 비트 검색 메뉴를 엽니다.

5 SPI 비트 검색 메뉴에서 **워드** 소프트키를 사용하여 데이터 값에 포함된 워드 수를 지정하고, 나머지 소프트키를 사용하여 16 진수 값을 입력합니다.

데이터 검색에 대한 자세한 내용은 "리스터 데이터 검색 " 120 페이지을 참조하 십시오 .

[이동] 키와 컨트롤 사용에 대한 자세한 내용은 "<mark>타임 베이스 탐색</mark> "55 페이지 을 참조하십시오.

24 I2C/SPI 트리거링 및 시리얼 디코드

Keysight InfiniiVision 2000 X 시리즈 오실로스코프 사용 설명서

25 UART/RS232 트리거링 및 시리얼 디코드

UART/RS232 신호 설정 / 353 UART/RS232 트리거링 / 355 UART/RS232 시리얼 디코드 / 357

UART/RS232 트리거링 및 직렬 디코드 옵션은 라이센스가 활성화되어 있습니 다.

UART/RS232 신호 설정

UART/RS232 신호를 캡처하도록 오실로스코프를 설정하려면

- 1 [Label](라벨)을 눌러 라벨을 켭니다.
- 2 [Serial](시리얼)을 누릅니다.
- 3 모드 소프트키를 누른 다음 UART/RS232 트리거 유형을 선택합니다.
- 4 신호 소프트키를 눌러 UART/RS232 신호 메뉴를 엽니다.

- **5** For both the Rx and Tx signals:
 - a 오실로스코프 채널을 테스트 대상 장치 내의 신호에 연결합니다.
 - b Rx 또는 Tx 소프트키를 누른 다음 엔트리 노브를 돌려 신호를 적용할 채널 을 선택합니다.
 - c 해당하는 임계값 소프트키를 누른 다음, 엔트리 노브를 돌려 신호 임계 전 압 레벨을 선택합니다.

임계 전압 레벨은 디코딩에 사용되며, 트리거 유형을 선택한 시리얼 디코 드 슬롯으로 설정하면 트리거 레벨이 됩니다.

소스 채널의 RX 및 TX 라벨은 자동으로 설정됩니다.

- 6 🚳 뒤로 / 위로 키를 눌러 시리얼 디코드 메뉴로 돌아갑니다.
- 7 버스 구성 소프트키를 눌러 UART/RS232 버스 구성 메뉴를 엽니다.

UART/RS232 버스 구	성 메뉴				
○ #비트수	📀 패리티	보드 속도	[이 특성] [🕤 비트 순서	
8	홀수	+	유휴 낮음	LSB	

다음 파라미터를 설정합니다.

- a 비트 수 UART/RS232 워드에 포함될 비트 수를 테스트 대상 장치에 일 치하도록 설정합니다 (5-9 비트로 선택 가능).
- b 패리티 테스트 대상 장치에 따라 홀수, 짝수 또는 없음을 선택합니다.
- c 보드 보드 속도 소프트키를 누른 다음 보드 소프트키를 누르고 테스트 대상 장치의 신호에 일치하는 보드 속도를 선택합니다. 원하는 보드 속도 가 목록에 없을 경우, 보드 소프트키에서 사용자 정의를 선택한 다음 유저 보드 소프트키를 사용하여 원하는 보드 속도를 선택합니다.

UART 보드 속도는 1.2 kb/s ~ 8.0000 Mb/s 사이에서 100 b/s 단위로 설 정할 수 있습니다.

- d 국성 테스트 대상 장치의 유휴 상태와 일치하도록 유휴 낮음 또는 유휴 높음을 선택합니다. RS232 의 경우 유휴 낮음을 선택합니다.
- e 비트 순서 테스트 대상 장치에서 나오는 신호의 시작 비트 뒤에 최상위 비트 (MSB) 또는 최하위 비트 (LSB) 를 배치할 것인지 선택합니다. RS232 의 경우 LSB 를 선택합니다.
- 참 고 시리얼 디코드 디스플레이에서는 MSB 가 비트 순서 설정에 관계 없이 항상 왼 쪽에 표시됩니다 .

UART/RS232 트리거링

UART/RS-232 신호를 캡처하도록 오실로스코프를 설정하려면 "UART/RS232 신호 설정 " 353 페이지을 참조하십시오.

UART(Universal Asynchronous Receiver/Transmitter) 신호에 트리거하려 면 오실로스코프를 Rx 및 Tx 라인에 연결하고 트리거 조건을 설정하십시오. RS232(Recommended Standard 232) 는 UART 프로토콜의 한 예입니다.

- 1 [Trigger](트리거)를 누릅니다.
- 2 트리거 메뉴에서 트리거 소프트키를 누른 다음 엔트리 노브를 돌려 UART/RS232 신호가 디코딩되는 시리얼 슬롯 (시리얼 1)을 선택합니다.

3 트리거 설정 소프트키를 눌러 UART/RS232 트리거 설정 메뉴를 엽니다.

4 베이스 소프트키를 눌러 UART/RS232 트리거 설정 메뉴에 있는 데이터 소 프트키에 표시되는 기준으로 16 진수 또는 ASCII 를 선택합니다.

이 소프트키의 설정 내용이 선택한 디코드 디스플레이 기준에 영향을 주지는 않는다는 점을 참고하십시오.

- 5 **트리거** 소프트키를 누르고 원하는 트리거 조건을 설정합니다.
 - Rx 시작 비트 Rx 에서 시작 비트가 발생할 때 오실로스코프가 트리거합 니다.
 - Rx 정지 비트 Rx 에서 정지 비트가 발생할 때 트리거합니다. 첫 번째 정 지 비트에서 트리거가 발생합니다. 테스트 대상 장치가 1, 1.5 또는 2 정지 비트를 사용하는지 여부에 관계없이 트리거가 자동으로 발생합니다. 테스 트 대상 장치에서 사용하는 정지 비트 수를 지정할 필요는 없습니다.
 - Rx 데이터 사용자가 지정한 데이터 바이트에 트리거합니다. 테스트 대 상 장치 데이터 워드의 길이가 5~8 비트인 경우에 사용합니다(9 번째(경고) 비트 없음).

- Rx 1: 데이터 테스트 대상 장치 데이터 워드의 길이가 경고 비트 (9 번째 비트)를 포함하여 9 비트인 경우에 사용합니다. 9 번째 (경고) 비트가 1 인 경우 트리거합니다. 지정된 데이터 바이트는 최하위 8 비트 (9 번째 (경고) 비트 제외)에 적용됩니다.
- Rx 0: 데이터 테스트 대상 장치 데이터 워드의 길이가 경고 비트 (9 번째 비트)를 포함하여 9 비트인 경우에 사용합니다. 9 번째 (경고) 비트가 0 인 경우 트리거합니다. 지정된 데이터 바이트는 최하위 8 비트 (9 번째 (경고) 비트 제외)에 적용됩니다.
- Rx X: 데이터 테스트 대상 장치 데이터 워드의 길이가 경고 비트 (9번째 비트)를 포함하여 9 비트인 경우에 사용합니다. 9 번째 (경고) 비트 값에 관계없이 지정한 데이터 바이트에 트리거합니다. 지정된 데이터 바이트는 최하위 8 비트 (9 번째 (경고) 비트 제외)에 적용됩니다.
- Tx 에서도 비슷한 선택을 할 수 있습니다.
- Rx 또는 Tx 패리티 오류 버스 구성 메뉴에서 설정한 패리티를 기준으로 패리티 오류에 트리거합니다.
- 6 설명에 "데이터 "가 포함된 트리거 조건 (예: Rx 데이터)을 선택한 경우, 데이터 소프트키를 누르고 동등 한정자를 선택합니다. 특정 데이터 값과 같 음, 같지 않음, 미만 또는 초과를 선택할 수 있습니다.
- **7 데이터** 소프트키를 사용하여 트리거 비교에 사용할 데이터 값을 선택합니다. 이 설정은 **데이터** 소프트키와 함께 적용됩니다.
- 8 옵션: 버스트 소프트키를 사용하면 선택한 유휴 기간이 지난 후 N 번째 프레 임 (1-4096)에 트리거할 수 있습니다. 트리거가 발생하려면 모든 트리거 조 건이 충족되어야 합니다.
- 9 버스트를 선택한 경우, 오실로스코프가 유휴 시간이 경과한 후에만 트리거 조건을 찾도록 유휴 시간 (1 µs ~ 10 초)을 지정할 수 있습니다. 비활동 소 프트키를 누른 다음, 엔트리 노브를 돌려 유휴 시간을 설정합니다.
- 참 고
 현재 설정으로 안정적인 트리거를 얻을 수 없는 경우, UART/RS232 신호가 너 무 느려 오실로스코프가 자동 트리거를 실행하는 상태일 수 있습니다.

 [Mode/Coupling](모드 / 커플링) 키를 누른 다음 모드 소프트키를 눌러 트리 거 모드를 자동에서 일반으로 설정하십시오.

고 UART/RS232 시리얼 디코드를 표시하려면 "UART/RS232 시리얼 디코드 " 357 페이지를 참조하십시오 .

UART/RS232 시리얼 디코드

UART/RS232 신호를 캡처하도록 오실로스코프를 설정하려면 "UART/RS232 신호 설정 " 353 페이지을 참조하십시오 .

UART/RS232 트리거링 설정은 "UART/RS232 트리거링" 355 페이지을 참조하 십시오.

UART/RS232 시리얼 디코드를 설정하려면

1 [Serial](시리얼)을 눌러 시리얼 디코드 메뉴가 표시되도록 합니다.

- 2 설정을 누릅니다.
- **3** UART/RS232 설정 메뉴에서 베이스 소프트키를 눌러 디코딩된 워드가 표시 될 기준 (16 진수, 2 진수 또는 ASCII)을 선택합니다.

- 워드를 ASCII 로 표시하는 경우 7 비트 ASCII 형식이 사용됩니다. 유효한 ASCII 문자는 0x00 과 0x7F 사이입니다. ASCII 형식으로 표시하려면 버 스 구성에서 7 비트 이상을 선택해야 합니다. ASCII 형식을 선택했지만 데 이터가 0x7F 를 초과할 경우, 데이터가 16 진수로 표시됩니다.
- UART/RS232 버스 구성 메뉴에서 **#Bits** 를 9 로 설정하면, 9 번째 (경고) 비트가 ASCII 값 (하위 8 비트에서 파생됨) 바로 왼쪽에 표시됩니다.
- 4 또는 프레이밍 소프트키를 누르고 값을 선택할 수 있습니다. 디코드 화면에 선택한 값이 밝은 파란색으로 표시됩니다. 단, 패리티 오류가 발생하면 데이 터가 빨간색으로 표시됩니다.
- 5 디스플레이에 디코드 라인이 표시되지 않은 경우 [Serial](시리얼) 키를 눌 러서 켜십시오.
- 6 오실로스코프가 중지된 상태라면 [Run/Stop](실행/정지) 키를 눌러 데이 더를 수집 및 디코드하십시오.

참 고 현재 설정으로 안정적인 트리거를 얻을 수 없는 경우, UART/RS232 신호가 너 무 느려 오실로스코프가 자동 트리거를 실행하는 상태일 수 있습니다. [Mode/Coupling](모드 / 커플링) 키를 누른 다음 모드 소프트키를 눌러 트리 거 모드를 **자동**에서 일반으로 설정하십시오.

수평 줌 창을 사용하면 수집된 데이터를 손쉽게 탐색할 수 있습니다.

- 관련 항목 "UART/RS232 디코드 해석 " 358 페이지
 - "UART/RS232 토털라이저 " 359 페이지
 - "UART/RS232 리스터 데이터 해석 " 360 페이지
 - "리스터에서 UART/RS232 데이터 검색 " 360 페이지

UART/RS232 디코드 해석

- 앵글 파형은 활성 버스를 나타냅니다 (패킷 / 프레임 내부).
- 중간 레벨 청색 라인은 유휴 버스를 나타냅니다.
- 5-8 비트 형식을 사용할 경우, 디코드 데이터는 흰색 (2 진수, 16 진수 또는 ASCII 형태)으로 표시됩니다.

- 9 비트 형식을 사용할 경우, 모든 데이터 워드가 녹색으로 표시됩니다 (9 번 째 비트 포함). 9 번째 비트는 왼쪽에 표시됩니다.
- 프레임에 데이터 워드 값을 선택한 경우, 해당 값이 밝은 파란색으로 표시됩니다. 9 비트 데이터 워드를 사용할 경우, 9 번째 비트 또한 밝은 파란색으로 표시됩니다.
- 프레임 경계 내에 충분한 공간이 없을 경우 디코딩된 텍스트가 관련 프레임의 끝부분에서 잘립니다.
- 분홍색 수직 막대는 디코딩을 보려면 수평 스케일을 확장(및 재실행)해야 함을 나타냅니다.
- 수평 스케일 설정이 사용 가능한 디코딩된 데이터를 모두 표시할 수 없는 경 우 디코딩된 버스 내에 숨겨진 데이터를 표시하는 빨간색 점이 나타납니다. 데이터가 표시되도록 하려면 수평 스케일을 확장하십시오.
- 알 수 없는 (정의되지 않은) 버스는 빨간색으로 표시됩니다.
- 패리티 오류가 발생하면 5-8 데이터 비트와 옵션 9 번째 비트를 포함한 관련 데이터 워드가 빨간색으로 표시됩니다.

UART/RS232 토털라이저

UART/RS232 토털라이저는 버스 품질 및 효율성을 직접 측정할 수 있는 카운 터로 구성되어 있습니다. 토털라이저는 시리얼 디코드 메뉴에서 UART/RS232 디코드를 켤 때마다 화면에 표시됩니다.

시리얼 디코드 메뉴	RX FRAMES: 00	00010026 TX FRAM	ES: 0000006036 ERR:	: 0000000140(0.9%)	
	모드	신호	버스 구성	설정	리스터
	UART/RS232	+	+	+	+

토털라이저는 오실로스코프가 정지된 상태 (데이터를 수집하지 않음)에서도 실행되며,프레임을 카운트하고,오류 프레임의 백분율을 계산합니다.

ERR(오류) 카운터는 패리티 오류가 있는 Rx 및 Tx 프레임의 카운트입니다. TX FRAMES 및 RX FRAMES 카운트에는 일반 프레임과 패리티 오류가 있는 프레임이 모두 포함됩니다. 오버플로우 상태가 발생하면 카운터에 OVERFLOW 라고 표시됩니다.

카운터는 UART/RS232 설정 메뉴에 있는 UART 리세트 카운터 소프트키를 눌 러 0 으로 재설정할 수 있습니다. UART/RS232 리스터 데이터 해석

UART/RS232 리스터에는 표준 시간 열 이외에 다음과 같은 열이 포함되어 있 습니다.

- Rx 수신 데이터
- Tx 전송 데이터
- 오류 빨간색으로 강조 표시됨, 패리티 오류 또는 알 수 없는 오류

앨리어스가 적용된 데이터는 분홍색으로 강조 표시됩니다. 이 경우 수평 time/div 설정을 낮추고 다시 실행하십시오.

리스터에서 UART/RS232 데이터 검색

오실로스코프의 검색 기능을 사용하여 리스터에서 특정 유형의 UART/RS232 데이터를 검색하고 마킹할 수 있습니다. [Navigate](이동) 키 및 컨트롤을 사 용하여 마킹된 행을 탐색할 수 있습니다.

- 1 UART/RS232 를 시리얼 디코드 모드로 선택한 상태에서 [Search](검색) 을 누릅니다.
- 2 검색 메뉴에서 검색 소프트키를 누른 다음 엔트리 노브를 돌려 UART/RS232 신호가 디코딩되는 시리얼 슬롯 (시리얼 1 또는 시리얼 2)을 선택합니다.
- 3 검색 메뉴에서 검색을 누른 다음, 아래 옵션 중 하나를 선택하십시오.
 - Rx 데이터 사용자가 지정한 데이터 바이트를 찾습니다. DUT 데이터 워드의 길이가 5~8 비트인 경우에 사용합니다 (9 번째 (경고) 비트 없음).
 - Rx 1: 데이터 DUT 데이터 워드의 길이가 경고 비트 (9 번째 비트)를 포함하여 9 비트인 경우에 사용합니다. 9 번째 (경고) 비트가 1 인 경우만 찾습니다. 지정한 데이터 바이트는 최하위 8 비트 (9 번째 (경고) 비트 제 외)에 적용됩니다.
 - **Fx 0: 데이터** DUT 데이터 워드의 길이가 경고 비트 (9 번째 비트)를 포함하여 9 비트인 경우에 사용합니다. 9 번째 (경고) 비트가 0 인 경우만 찾습니다. 지정한 데이터 바이트는 최하위 8 비트 (9 번째 (경고) 비트 제 외)에 적용됩니다.
 - Rx X: 데이터 DUT 데이터 워드의 길이가 경고 비트 (9 번째 비트)를 포함하여 9 비트인 경우에 사용합니다. 9 번째 (경고) 비트 값에 관계없 이 지정한 데이터 바이트를 찾습니다. 지정된 데이터 바이트는 최하위 8 비트 (9 번째 (경고) 비트 제외)에 적용됩니다.
 - Tx 에서도 비슷한 선택을 할 수 있습니다.
 - Rx 또는 Tx 패리티 오류 버스 구성 메뉴에서 설정한 패리티를 기준으로 패리티 오류를 찾습니다.
 - 모든 Rx 또는 Tx 오류 모든 오류를 찾습니다.

데이터 검색에 대한 자세한 내용은 "리스터 데이터 검색" 120 페이지을 참조하 십시오.

[Navigate](이동) 키와 컨트롤 사용에 대한 자세한 내용은 "타임 베이스 탐색 " 55 페이지를 참조하십시오. 25 UART/RS232 트리거링 및 시리얼 디코드

색인

Symbols (-) 폭 측정, 210 (+) 폭 측정, 210 **Numerics** 16 진수 버스 트리거, 146 16 진수 소프트키 , 146 2 진수 데이터 파일 예 , 309 2 진수 데이터 , 읽기 예제 프로그 램, 308 2 진수 데이터 (.bin), 305 가로 방향 모드 , <mark>262</mark> 가변 지속성 . 125 가우시안 주파수 응답, 176 감쇠,프로브, <mark>64</mark> 감쇠, 프로브, 외부 트리거, 171 값 선택, 33 값, 선택, 33 검색 키, <mark>34</mark> 게이트웨이 IP, 267 격자 명암, 127 격자 유형, 126 고분해능 모드 , 179, 185 고준애등 포프, 176, 17 고속 디버그 자동설정, 273 고주파 노이즈 제거 . 169 고지, 2 곱하기 산술 함수 , 71 공해 등급 , <mark>301</mark> 공해 등급, 정의, <mark>30</mark>1 과전압 분류, 301 교대 에지 트리거, 139 구성 소프트키, 267, 268 구정 정보, 315 고객버 101 102 그래픽 사용자 인터페이스 언어 . 44 글리치 캡처 , 180 글리지 답지, 141 글리치 트리거, 141 기본 구성, 27 기본 라벨 라이브러리, 133

기본 설정 , <mark>27, 256</mark> 기본 설정 키 , <mark>3</mark>4 기본값, 파형 발생기, 245 기울기 트리거 , <mark>138</mark> 기준 10 지수 산술 함수 , <mark>87</mark> 기준 키 , 35, 95 기준 파형 , 95 기준 포인트, 파형, 271 길이 소프트키, <mark>25</mark>1 길이 제어 , 251

 나누기 산술 함수, 71
 독일 소음 요구사항, 316

 나아기스트 샘플링 원리, 175
 독일어 사용자 인터페이스 및 빠른

 나이키스트 주파수, 82
 도움말, 44

 내아이키스트 감말, 43
 독일어 전면 패널 오버레이, 39

 네아이키스트 가락, 82
 독기 팩스, 파려 바세기, 21

 내장 도움말, 43 네트워크 구성 파라미터, 285 동적 DNS, 267 내드인그 아희 패석정, 297 뒤로 위로 키, 32 네트워크 프린터 연결 , 261 네트워크 , 연결하기 , 267 니스플레이 고정, 281 도브, 전면 패널, 31 노이즈 제거, 169 니스플레이 고정, 빠른 디스플레 이 고정 201

 노이즈 파형 발생기 출력, 237
 이 고정, 281

 노이즈, 고주파, 169
 디스플레이 삭제, 182

 노이즈, 지주파, 168
 이 삭제, 281

 노이즈, 파형 발생기 출력에 추가 디스플레이 키, 36 . 240 노이즈가 많은 신호, 165 눈금 명암 , <mark>12</mark>7 눈금 색상 반전 , <mark>25</mark>0 눈금 유형 , 126 눌러서 이동, 254, 270 디지털 버스 모드, 108 단위, 산술, 69, 70 디지털 전압계 (DVM), 2 단위, 외부 트리거 프로브, 171 단위, 퍼구 _ 이가 _ _ _ 단위, 커서, 191 다의 프로브 63 단위,프로브, <mark>63</mark> 단일 수집, 34 대역폭, 279 대역폭 제한, 62 대역폭, 오실로스코프, 176 디지털 채널 컨트롤, 35 더하기 산술 함수 , 71 데드 타임 (재준비), 188

데모 1 단자, 37 데모 2 단자 , 37 데시벨, FFT 수직 단위, <mark>78</mark> 데이터 저장 , <mark>247</mark> 데이터 저장 시간, 252 데이터시트, <mark>299</mark> 도구 키, 33 도움말 키, 36 도움말 키, 43 독립형 연결 , 268 듀티 사이클 측정, 210 듀티 사이클 측정 트렌드, 91 디스플레이 고정, 281 디스플레이 삭제, 빠른 디스플레 디스플레이. 신호 세부 정보 , 123 디스플레이, 영역, 42 디스플레이, 지속성, 125 디스플레이, 해석, 41 디지털 전압계 (DVM), 231 디지털 채널 , <mark>106</mark> 디지털 채널 라이센스 추가, 304 디지털 채널 메뉴 , 106 디지털 채널 선택 , 107 디지털 채널 위치, 107 디지털 채널 입력 , 37 디지털 채널, 로직 임계값, 106 디지털 채널 , 자동설정 , 103

 디지털 제날, 크그, 105
 모텔 번호, 279, 285
 빠른 요출, 281

 디지털 채날, 프로벌, 111
 모, 기월월 가, 104
 모드, 기월월 가, 105

 디지털 프로브, 81 미료스, 111
 모구, 기월월 가, 165
 가장 주, 21

 라벨 목록, 133
 모르, 165
 가장 주, 152

 라벨 목록, 133
 모르, 152
 가장 주, 132

 라벨 무로브, 88 미료스, 111
 도가, 122
 가장 주, 132

 라벨 가장 주, 132
 미료 산호, 165

 가진 아스, 202, 304
 미료 산호, 165

 라이 신스, 302, 304
 미료 산호, 165

 라이 신스, 302, 304
 비너, 개날, 62

 라스, 113
 비너, 개날, 62

 리스, 289
 서너, 277

 라이 언스, 302, 304
 비너, 27

 리스, 289
 150

 로드리, 133
 비스, 123

 라이 언스, 302, 304
 100

 라이 언스, 302, 304
 101

 라이 언스, 302, 304
 102

 라이 먼스, 302, 80
 115

 리트 프리, 135
 112, 178

 리스, 118
 112, 178

 리스, 118
 114

 로드라, 135
 115

 리너, 118
 116

 116
 116

 117
 112

 118
 114

샘플링, 개요, 175
서브넷 마스크, 267
서비스 기능, 275수집 모드, 피크 검출, 180
수집 모드, 피크 검출, 180
수집 모드, 피크 검출, 180
수집 자작, 34양의 펄스 폭 측정 트렌드, 91
어느 한쪽 에지 트리거, 139
언더샘플링 신호, 175선택 항목, 270
선택, 값, 33
설정 및 유지 트리거링, 152
설정 파일 저장, 249
설정 파일, 저장, 249
설정 파일, 저장, 249
설정 파일, 저장, 249
설정 화말일, 저장, 249
설정, 기본, 27
설정, 기본, 27
설정, 가동, 103
설정, 호출, 255
설정, 자동, 103
실정, 호출, 255
성평 이동 키, 34
수평 이동 키, 34
수평 기치 컨트롤, 34, 48
수평 기, 34
수평 기지 컨트롤, 34, 48
수평 기, 34
수평 기초, 249
성정, 기본, 27
성정, 가동, 103
실정, 호출, 255
성평 이동 키, 34
수평 이동 키, 34
수평 기통, 34, 45, 50, 52, 182
수평 기도, 34, 45, 50, 52, 182
수평 기, 34, 45, 50, 52, 182
수평 기도, 34, 45, 50, 52, 182
수평 기, 34
수명 기, 35
연산자, 산술, 70
영어 사용자 인터페이스 및 빠른
도움말, 44세그먼트 메모리, 세그먼트 저장
, 251
세그먼트 메모리, 재준비 시간스큐, 아날로그 채널, 64
스팬, FFT, 77
스페인어 사용자 인터페이스 및 빠
른 도움말, 44세그먼트 메모리, 재준비 시간스큐, 우당 러지 아스 및 빠
른 도움말, 44 세그먼트 메모리, 재준비 시간 른 도움말, 44 오버레이, 지역화, 38 , 188 스페인어 전면 패널 오버레이, 39 오버슈트 측정, 200, 203 세그먼트 저장, 251 스펙트럼 누설, FFT, 83 오실로스코프 대역폭, 170

색인

 웹 인터페이스를 통한 화면 이미지 292
 자동설설, C.지탈 제날, 103 자동설설, 실행 취소, 29 지금 소프트키, 146
 주파수 초정 트렌드, 91 주파수, L.U)키스트, 175

 웹 인터페이스를 통해 파일 지상 , 290
 지동설설, 실행 취소, 29 지금 소프트키, 146
 주파수, LU)키스트, 175

 웹 인터페이스를 통해 파일 지상 , 290
 지금 소프트키, 146
 주파수, LU)키스트, 175

 웹 인터페이스를 통해 파일 지상 , 290
 지금 소프트키, 146
 지금 소프트, 175

 위치, 254, 270
 지금 사람, 253
 지금 사람, 253

 지도 시, 105
 지금 사람, 253
 지금 사람, 253

 지금 사람, 191
 지금 사람, 253

 지금 가, 34
 지금 가, 34

 지금 사람, 191
 지금 사람, 253

 지금 가, 34
 지금 가, 24

 지금 사람, 281
 지금 가, 24

 지금 사람, 281
 지금 가, 24

 지금 사람, 281
 지금 사람, 253

 지금 사람, 281
 지금 사람, 283

 이탈 리아아 지, 185
 지금 사람, 274

편차, FM 변조, <mark>243</mark> 평균 - 전체 화면 측정, 205 평균 - N 사이클 측정 , 205 평균 측정 트렌드 , 91 평균화 수집 모드 , 179 포르투갈어 사용자 인터페이스 및 빠른 도움말, 44 포르투갈어 전면 패널 오버레이 . 39 포인트 투 포인트 연결, 268 폭 - 측정, 210 폭 + 측정, 210 폴딩 주파수, 175 폴란드의 전면 패널 오버레이, 39 표시,상태 표시줄, 42 표시, 소프트키 라벨, 43 표시되는 채널 자동설정, 273 표준 편차 측정, 206 프랑스어 사용자 인터페이스 및 빠 른 도움말, **44** 프랑스어 전면 패널 오버레이, 39 프레임 트리거, I2C, 336 프로그래머 설명서, 290 프로브, <mark>30</mark>1 프로브 감쇠 , <mark>6</mark>4 프로브 감쇠, 외부 트리거, 171 프로브 단위, 63 _ 프로브 보정 , <mark>3</mark>7 프로브 연결, 디지털, 99 프로브. 디지털, 99 프로브, 오실로스코프에 연결 , 26 프로브, 패시브, 보정, 30 프리슈트 측정, 200, 205 프린터, USB, 37, 259 프린트 종류, 262 플래시 드라이브, 37 플랫 탑 FFT 윈도우. 78 피크 검출 모드, 179, 180 피크 - 피크 측정, 202 필요 대역폭, 오실로스코프, 178 필요한 오실로스코프 대역폭 . 178 필터 산술 함수 , 하이패스 및 로우 패스, 88 필터,산술,<mark>88</mark> 하강시간 측정 . 210 하강시간 측정 트렌드, 91 하드웨어 자가 테스트, 278

하이패스 필터 산술 함수, 88 한국어 사용자 인터페이스 및 빠른 도움말, 44 한국어 전면 패널 오버레이, 39 한정자, 펄스 폭, 143 해닝 FFT 윈도우, 78 호스트 이름, 267, 285 호스트 이름 소프트키, 268 호출, 281 호출, 빠른 호출, 281 홀드오프, <mark>16</mark>9 홉 주파수, FSK 변조, 244 화면 보호기, 272 화면 인쇄. 259 화면 인쇄하기, 259 화이트 노이즈, 파형 발생기 출력 에 추가, 240 확대 산술 함수, 90 확인 누락 조건, I2C 트리거, 335 확인 없음 주소 조건 , I2C 트리거 , 335 확장, 271 확장 기준, 61 환기 요구사항, 25 활성 시리얼 버스, <u>322</u>, <u>330</u>, 339.349.358 황금률 파형 테스트, 217 후면 패널 커넥터, 39

A

AC 채널 커플링, 62 AC RMS - 전체 화면 측정, 206 AC RMS - N 사이클 측정, 206 AM(진폭 변조), 파형 발생기 출 력, 241 ASCII 파일 형식, 248 AUTO 옵션, 302 AutoIP, 267, 268 Ax + B 산술 함수, 84

В

BIN 파일 형식 , 248 Blackman Harris FFT 윈도우 , 78 BMP 파일 형식 , 248 Browser Web Control, 287, 289

С

CAN 디코드, 소스 채널, 318 CAN 시리얼 디코드, 321 CAN 토털라이저, 323 CAN 트리거, 319 CAN 프레임 카운터, 323 CMOS 임계값, 107 COMP 라이센스, 303 CSV 파일 형식, 248 CSV 파일, 최소 및 최대값, 312

D

D*, 35, 107 d/dt 산술 함수, 73 D2000AUTA 라이센스, 302 D2000GENA 라이센스, 302 DC 신호, 검사, 167 DC 채널 커플링, 62 DC 파형 발생기 출력, 237 DC RMS - 전체 화면 측정, 206 DC RMS - N 사이클 측정, 206 DHCP, 267, 268 DNS IP, 267 DVM 디스플레이에 BW 제한 ?, 232 DVM 라이센스, 303 DVM(디지털 전압계, 231

E

ECL 임계값, 107 EDK 라이센스, 303 EEPROM 데이터 읽기, I2C 트리 거, 335 EMBD 라이센스, 303 EXT TRIG IN 커넥터, 41

F

f(t), 69 FFT 단위, 81 FFT 수직 단위, 78 FFT 스펙트럼 누설, 83 FFT 앨리어싱, 81 FFT 윈도우, 78 FFT 측정, 77 FFT 측정 힌트, 80 FFT 해상도, 80 FFT DC 값, 81 FM(주파수 변조), 파형 발생기 출 력, 242 FSK(주파수 편이 변조), 파형 발 생기 출력, 244 FSK(주파수 편이 변조), 파형 생 성기 출력, 244

G

g(t), 69 GPIB 모듈, 24, 40 GPIB 모듈 설치, 24 GPIB 인터페이스, 원격 제어 , 265 GPIB 주소, 266

Η

HF 제거, 169

I/O 인터페이스 설정 , 265 I2C 시리얼 디코드 , 338 I2C 트리거 , 334 Instrument Utilities 웹 페이지 , 294 IP 주소 , 267, 285

K

Keysight IO Libraries Suite, 290

L

LAN 설정 소프트키, 267, 268 LAN 연결, 267 LAN 인터페이스, 원격 제어, 265 LAN 포트, 40 LAN/VGA 모듈 , 24, 40 LAN/VGA 모듈 설치, 24 LF 제거, 168 LIN 시리얼 디코드, 329 LIN 트리거, 327

Μ

MASK 라이센스, 303

MATLAB 2 진수 데이터 , 306 MATLAB 에서 2 진수 데이터 활용 , 306 MegaZoom IV, 4 mem4M, 303 MSO, 3 MSO 기능 업그레이드 , 304 MSO 라이센스 , 303

Ν

N8900A InfiniiView 오실로스코프 분석 소프트웨어, 248 N 차 에지 버스트 트리거, 149 N 차 에지 버스트 트리거링, 149

0

OR 트리거, 146

Ρ

PC 연결, 268 PLUS 라이센스, 303 PNG 파일 형식, 248

R

RML 라이센스, <mark>303</mark> RMS - AC 측정 트렌드, 91 RS232 트리거, 355

S

SCL, I2C 트리거, 334 SCPI Commands 참, 289 SDA, 333 SDA, I2C 트리거, 334 SGM, 185 SGM 라이센스, 304 SPI 시리얼 디코드, 347 SPI 트리거, 345

Т

TRIG OUT 커넥터, 41, 274 Trig'd 트리거 표시기, 167 Trig'd? 트리거 표시기, 167 TTL 임계값, 107

U

UART 토털라이저. 359 UART 트리거. 355 UART/RS232 라이센스, 303 UART/RS232 시리얼 디코드 . 357 UART/RS232 프레임 카운터 , 359 usb. 271 USB 장치 포트, 41 USB 장치 포트, 원격 제어, 265 USB 저장 장치. 37 USB 프린터, 259 USB 프린터, 지원되는, 259 USB 호스트 포트, 37, 41, 259 USB, 장치 꺼내기, 37 USB, 저장 장치 번호 지정, 271 USB. 트리거 유형, 162 USB, CD 장치, 271 usb2, 271

V

V RMS, FFT 수직 단위, 78 VGA 비디오 출력, 40 VISA 연결 문자열, 285

W

WAVEGEN 라이센스, 304

Х

XY 모드 , 49

Ζ

Z 축 블랭킹 , <mark>51</mark> Z 축 입력으로 EXT TRIG IN 사용 , <mark>51</mark> 색인